Stone's theorem for distributional regression in Wasserstein distance

被引:0
|
作者
Dombry, Clement [1 ]
Modeste, Thibault [2 ]
Pic, Romain [1 ]
机构
[1] Univ Franche Comte, CNRS, LmB, UMR 6623, F-25000 Besancon, France
[2] Univ Claude Bernard Lyon 1, Inst Camille Jordan, CNRS, UMR 5208, F-69622 Villeurbanne, France
关键词
Distributional regression; Wasserstein distance; nonparametric regression; minimax rate of convergence; CONVERGENCE; RATES;
D O I
10.1080/10485252.2024.2393172
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the celebrated Stone's theorem to the framework of distributional regression. More precisely, we prove that weighted empirical distributions with local probability weights satisfying the conditions of Stone's theorem provide universally consistent estimates of the conditional distributions, where the error is measured by the Wasserstein distance of order $ p\geq 1 $ p >= 1. Furthermore, for p = 1, we determine the minimax rates of convergence on specific classes of distributions. We finally provide some applications of these results, including the estimation of conditional tail expectation or probability weighted moments.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Wasserstein distance to independence models
    Celik, Turku Ozluem
    Jamneshan, Asgar
    Montufar, Guido
    Sturmfels, Bernd
    Venturello, Lorenzo
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 104 : 855 - 873
  • [42] Wasserstein distance on configuration space
    Decreusefond, L.
    POTENTIAL ANALYSIS, 2008, 28 (03) : 283 - 300
  • [43] Multivariate approximations in Wasserstein distance by Stein's method and Bismut's formula
    Fang, Xiao
    Shao, Qi-Man
    Xu, Lihu
    PROBABILITY THEORY AND RELATED FIELDS, 2019, 174 (3-4) : 945 - 979
  • [44] Adversarial classification via distributional robustness with Wasserstein ambiguity
    Nam Ho-Nguyen
    Stephen J. Wright
    Mathematical Programming, 2023, 198 : 1411 - 1447
  • [45] Wasserstein Distance on Configuration Space
    L. Decreusefond
    Potential Analysis, 2008, 28 : 283 - 300
  • [46] Irregularity of Distribution in Wasserstein Distance
    Graham, Cole
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (05)
  • [47] Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula
    Xiao Fang
    Qi-Man Shao
    Lihu Xu
    Probability Theory and Related Fields, 2019, 174 : 945 - 979
  • [48] The Wasserstein distance to the circular law
    Jalowy, Jonas
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (04): : 2285 - 2307
  • [49] On Properties of the Generalized Wasserstein Distance
    Benedetto Piccoli
    Francesco Rossi
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1339 - 1365
  • [50] Adversarial classification via distributional robustness with Wasserstein ambiguity
    Nam Ho-Nguyen
    Wright, Stephen J.
    MATHEMATICAL PROGRAMMING, 2023, 198 (02) : 1411 - 1447