Fire effects on soil CH4 and N2O fluxes across terrestrial ecosystems

被引:3
|
作者
Guo, Jiahuan [1 ]
Feng, Huili [1 ]
Peng, Changhui [2 ,3 ]
Du, Juan [4 ]
Wang, Weifeng [5 ]
Kneeshaw, Daniel [2 ]
Pan, Chang [6 ]
Roberge, Gabrielle [2 ]
Feng, Lei [7 ]
Chen, Anping [8 ,9 ]
机构
[1] Hainan Univ, Sch Trop Agr & Forestry, Sch Agr & Rural Affairs, Sch Rural Revitalizat,Key Lab Minist Educ Genet &, Haikou 570228, Hainan, Peoples R China
[2] Univ Quebec Montreal, Dept Biol Sci, Montreal, PQ H3C 3P8, Canada
[3] Hunan Normal Univ, Coll Geog Sci, Changsha 410081, Hunan, Peoples R China
[4] Chinese Acad Fishery Sci, Yangtze River Fisheries Res Inst, Wuhan 430223, Hubei, Peoples R China
[5] Nanjing Forestry Univ, Coll Biol & Environm, Coinnovat Ctr Sustainable Forestry Southern China, Nanjing 210037, Jiangsu, Peoples R China
[6] Anqing Normal Univ, Coll Life Sci, Anqing 246011, Anhui, Peoples R China
[7] Nanjing Univ, Sch Environm, State Key Lab Pollut Control & Resource Reuse, Nanjing 210023, Jiangsu, Peoples R China
[8] Colorado State Univ, Dept Biol, Ft Collins, CO 80523 USA
[9] Colorado State Univ, Grad Degree Program Ecol, Ft Collins, CO 80523 USA
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Fire; Soil; Methane; Nitrous oxide; Climate change; Terrestrial ecosystems; CARBON-DIOXIDE EFFLUX; NITROUS-OXIDE FLUXES; MODEL SELECTION; METHANE FLUX; FOREST SOILS; EMISSIONS; CO2; WILDFIRE; TUNDRA; OXIDATION;
D O I
10.1016/j.scitotenv.2024.174708
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Fire, as a natural disturbance, significantly shapes and influences the functions and services of terrestrial ecosystems via biotic and abiotic processes. Comprehending the influence of fire on soil greenhouse gas dynamics is crucial for understanding the feedback mechanisms between fire disturbances and climate change. Despite work on CO2 fluxes, there is a large uncertainty as to whether and how soil CH4 and N2O fluxes change in response to fire disturbance in terrestrial ecosystems. To narrow this knowledge gap, we performed a meta-analysis synthesizing 3615 paired observations from 116 global studies. Our findings revealed that fire increased global soil CH4 uptake in uplands by 23.2 %, soil CH4 emissions from peatlands by 74.7 %, and soil N2O emissions in terrestrial ecosystems (including upland and peatland) by 18.8 %. Fire increased soil CH4 uptake in boreal, temperate, and subtropical forests by 20.1 %, 38.8 %, and 30.2 %, respectively, and soil CH4 emissions in tropical forests by 193.3 %. Additionally, fire negatively affected soil total carbon (TC; -10.3 %), soil organic carbon (SOC; -15.6 %), microbial biomass carbon (MBC; -44.8 %), dissolved organic carbon (DOC; -27 %), microbial biomass nitrogen (MBN; -24.7 %), soil water content (SWC; -9.2 %), and water table depth (WTD; -68.2 %). Conversely, the fire increased soil bulk density (BD; +10.8 %), ammonium nitrogen (NH4+-N; +46 %), nitrate nitrogen (NO3 --N; +54 %), pH (+4.4 %), and soil temperature (+15.4 %). Our meta-regression analysis showed that the positive effects of fire on soil CH4 and N2O emissions were significantly positively correlated with mean annual temperature (MAT) and mean annual precipitation (MAP), indicating that climate warming will amplify the positive effects of fire disturbance on soil CH4 and N2O emissions. Taken together, since higher future temperatures are likely to prolong the fire season and increase the potential of fires, this could lead to positive feedback between warming, fire events, CH4 and N2O emissions, and future climate change.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Differences in carbon density and soil CH4/N2O flux among remnant and agro-ecosystems established since European settlement in the Mornington Peninsula, Australia
    Livesley, Stephen J.
    Idczak, Daniel
    Fest, Benedikt J.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2013, 465 : 17 - 25
  • [32] Summer fluxes of atmospheric greenhouse gases N2O, CH4 and CO2 from mangrove soil in South China
    Chen, G. C.
    Tam, N. F. Y.
    Ye, Y.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2010, 408 (13) : 2761 - 2767
  • [33] Effects of N management on N2O and CH4 fluxes and N-15 - Recovery in an irrigated mountain meadow
    Delgado, JA
    Mosier, AR
    Follett, RH
    Follett, RF
    Westfall, DG
    Klemedtsson, LK
    Vermeulen, J
    NUTRIENT CYCLING IN AGROECOSYSTEMS, 1996, 46 (02) : 127 - 134
  • [34] Fluxes of CH4, N2O, and kinetics of denitrification in disturbed and undisturbed forest soil in India
    Raut, Nani
    Sitaula, Bishal K.
    Bakken, Lars R.
    Dorsch, Peter
    CANADIAN JOURNAL OF SOIL SCIENCE, 2014, 94 (02) : 237 - 249
  • [35] N2O and CH4 fluxes in potato fields:: automated measurement, management effects and temporal variation
    Flessa, H
    Ruser, R
    Schilling, R
    Loftfield, N
    Munch, JC
    Kaiser, EA
    Beese, F
    GEODERMA, 2002, 105 (3-4) : 307 - 325
  • [36] Relationships between ammonia oxidizers and N2O and CH4 fluxes in agricultural fields with different soil types
    Akiyama, Hiroko
    Morimoto, Sho
    Tago, Kanako
    Hoshino, Yuko T.
    Nagaoka, Kazunari
    Yamasaki, Masatsugu
    Karasawa, Toshihiko
    Takenaka, Makoto
    Hayatsu, Masahito
    SOIL SCIENCE AND PLANT NUTRITION, 2014, 60 (04) : 520 - 529
  • [37] Effect of mowing on N2O and CH4 fluxes emissions from the meadow-steppe grasslands of Inner Mongolia
    Lu, Zedong
    Du, Rui
    Du, Pengrui
    Li, Ziming
    Liang, Zongmin
    Wang, Yaling
    Qin, Saisai
    Zhong, Lei
    FRONTIERS OF EARTH SCIENCE, 2015, 9 (03) : 473 - 486
  • [38] Effects of water table changes on soil CO2, CH4 and N2O fluxes during the growing season in freshwater marsh of Northeast China
    Hou, Cuicui
    Song, Changchun
    Li, Yingchen
    Wang, Jiaoyue
    Song, Yanyu
    Wang, Xianwei
    ENVIRONMENTAL EARTH SCIENCES, 2013, 69 (06) : 1963 - 1971
  • [39] The fluxes and controlling factors of N2O and CH4 emissions from freshwater marsh in Northeast China
    Yu, JunBao
    Liu, JingShuang
    Sun, ZhiGao
    Sun, WeiDong
    Wang, JinDa
    Wang, GuoPing
    Chen, XiaoBing
    SCIENCE CHINA-EARTH SCIENCES, 2010, 53 (05) : 700 - 709
  • [40] Combined CH4, N2O, and CO2 Fluxes Reveal a Net Carbon Sink Across a Glacier-Ocean Continuum
    Yau, Yvonne Y. Y.
    Cheung, Henry L. S.
    Ljungberg, Wilma
    Mckenzie, Tristan
    Henriksson, Linnea
    Majtenyi-Hill, Claudia
    Bonaglia, Stefano
    Santos, Isaac R.
    GEOPHYSICAL RESEARCH LETTERS, 2025, 52 (03)