Hybrid reconstruction of the physical model with the deep learning that improves structured illumination microscopy

被引:13
作者
Wang, Jianyong [1 ,2 ]
Fan, Junchao [3 ]
Zhou, Bo [1 ]
Huang, Xiaoshuai [4 ,5 ]
Chen, Liangyi [1 ,6 ,7 ,8 ]
机构
[1] Peking Univ, Ctr Life Sci, State Key Lab Membrane Biol, Beijing Key Lab Cardiometab Mol Med,Inst Mol Med,C, Beijing, Peoples R China
[2] Peking Univ, Sch Software & Microelect, Beijing, Peoples R China
[3] Chongqing Univ Posts & Telecommun, Coll Comp Sci & Technol, Chongqing Key Lab Image Cognit, Chongqing, Peoples R China
[4] Peking Univ, Biomed Engn Dept, Beijing, Peoples R China
[5] Peking Univ, Int Canc Inst, Beijing, Peoples R China
[6] PKU IDG McGovern Inst Brain Res, Beijing, Peoples R China
[7] Beijing Acad Artificial Intelligence, Beijing, Peoples R China
[8] Natl Biomed Imaging Ctr, Beijing, Peoples R China
来源
ADVANCED PHOTONICS NEXUS | 2023年 / 2卷 / 01期
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
structured illumination microscopy; superresolution reconstruction; deep learning; RESOLUTION;
D O I
10.1117/1.APN.2.1.016012
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Structured illumination microscopy (SIM) has been widely used in live-cell superresolution (SR) imaging. However, conventional physical model-based SIM SR reconstruction algorithms are prone to artifacts in handling raw images with low signal-to-noise ratios (SNRs). Deep-learning (DL)-based methods can address this challenge but may lead to degradation and hallucinations. By combining the physical inversion model with a total deep variation (TDV) regularization, we propose a hybrid restoration method (TDV-SIM) that outperforms conventional or DL methods in suppressing artifacts and hallucinations while maintaining resolutions. We demonstrate the performance superiority of TDV-SIM in restoring actin filaments, endoplasmic reticulum, and mitochondrial cristae from extremely low SNR raw images. Thus TDV-SIM represents the ideal method for prolonged live-cell SR imaging with minimal exposure and photodamage. Overall, TDV-SIM proves the power of integrating model-based reconstruction methods with DL ones, possibly leading to the rapid exploration of similar strategies in high-fidelity reconstructions of other microscopy methods.
引用
收藏
页数:9
相关论文
共 50 条
[21]   Analysis of image reconstruction artifacts in structured illumination microscopy [J].
Pospisil, Jakub ;
Fliegel, Karel ;
Klima, Milos .
APPLICATIONS OF DIGITAL IMAGE PROCESSING XL, 2017, 10396
[22]   Localized Plasmonic Structured Illumination Microscopy Using Hybrid Inverse Design [J].
Wu, Qianyi ;
Xu, Yihao ;
Zhao, Junxiang ;
Liu, Yongmin ;
Liu, Zhaowei .
NANO LETTERS, 2024, 24 (37) :11581-11589
[23]   Deep learning enables structured illumination microscopy with low light levels and enhanced speed [J].
Jin, Luhong ;
Liu, Bei ;
Zhao, Fenqiang ;
Hahn, Stephen ;
Dong, Bowei ;
Song, Ruiyan ;
Elston, Timothy C. ;
Xu, Yingke ;
Hahn, Klaus M. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[24]   Ensemble deep learning-enabled single-shot composite structured illumination microscopy (eDL-cSIM) [J].
Qian, Jiaming ;
Wang, Chunyao ;
Wu, Hongjun ;
Chen, Qian ;
Zuo, Chao .
PHOTONIX, 2025, 6 (01)
[25]   Super-Resolution Fluorescence Microscopy Image Reconstruction Algorithm Based on Structured Illumination [J].
Liu Zhi ;
Luo Zewei ;
Wang Zhengyin ;
Tu Zhuang ;
Zhuang Zhengfei ;
Chen Tongsheng .
CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2021, 48 (03)
[26]   Quantitative evaluation of intensity fidelity of super-resolution reconstruction for structured illumination microscopy [J].
Tang, Yujun ;
Wang, Linbo ;
Wen, Gang ;
Li, Hui .
JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES, 2025, 18 (01)
[27]   DMF-SIM: Dual-Model Framework for super-resolution reconstruction and denoising in Structured Illumination Microscopy [J].
Huo, Yue ;
Deng, Zhi ;
Zhang, Peng ;
Lu, Zixuan ;
Zhang, Feifan ;
Li, Meiqi ;
Hou, Yiwei ;
Xi, Peng ;
Huang, Wei ;
Zhang, Yanning .
PATTERN RECOGNITION, 2026, 169
[28]   High Fidelity Image Reconstruction of Optical Sectioning Structured Illumination Microscopy [J].
Xie Xianfeng ;
Qian Jia ;
Li Xing ;
Dang Shipei ;
Bai Chen ;
Min Junwei ;
Dan Dan ;
Yao Baoli .
ACTA PHOTONICA SINICA, 2023, 52 (11)
[29]   A method for the reconstruction of multifocal structured illumination microscopy data with high efficiency [J].
Feng, Liang ;
Zhou, Langfeng ;
Sun, Xinlei ;
Xu, Qiang ;
Chen, Ping ;
Wang, Xiaolei ;
Liu, Weiwei .
SCIENTIFIC REPORTS, 2019, 9 (1)
[30]   Image reconstruction for structured-illumination microscopy with low signal level [J].
Chu, Kaiqin ;
McMillan, Paul J. ;
Smith, Zachary J. ;
Yin, Jie ;
Atkins, Jeniffer ;
Goodwin, Paul ;
Wachsmann-Hogiu, Sebastian ;
Lane, Stephen .
OPTICS EXPRESS, 2014, 22 (07) :8687-8702