Hybrid Deep Learning and Model-Based Needle Shape Prediction

被引:0
|
作者
Lezcano, Dimitri A. [1 ]
Zhetpissov, Yernar [2 ]
Bernardes, Mariana C. [3 ]
Moreira, Pedro [3 ]
Tokuda, Junichi [3 ]
Kim, Jin Seob [1 ]
Iordachita, Iulian I. [1 ]
机构
[1] Johns Hopkins Univ, Mech Engn Dept, Baltimore, MD 21201 USA
[2] Johns Hopkins Univ, Mech Engn Dept, Baltimore, MD 21201 USA
[3] Harvard Med Sch, Brigham & Womens Hosp, Dept Radiol, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
Needles; Shape; Predictive models; Sensors; Three-dimensional displays; Deep learning; Trajectory; flexible needle; machine learning; medical device; model-based; shape prediction; STEERABLE NEEDLE; PROSTATE BIOPSY; INSERTION; DEFLECTION; TRACKING; TISSUE; ROBOT;
D O I
10.1109/JSEN.2024.3386120
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Needle insertion using flexible bevel-tip needles is a common minimally invasive surgical technique for prostate cancer interventions. Flexible, asymmetric bevel-tip needles enable physicians for complex needle steering techniques to avoid sensitive anatomical structures during needle insertion. For accurate placement of the needle, predicting the trajectory of these needles intraoperatively would greatly reduce the need for frequently needle reinsertions, thus improving patient comfort and positive outcomes. However, predicting the trajectory of the needle during insertion is a complex task that has yet to be solved due to random needle-tissue interactions. In this article, we present and validate, for the first time, a hybrid deep learning and model-based approach to handle the intraoperative needle shape prediction problem through leveraging a validated Lie-group theoretic model for needle shape representation. Furthermore, we present a novel self-supervised learning (SSL) and method in conjunction with the Lie-group shape model for training these networks in the absence of data, enabling further refinement of these networks with transfer learning (TL). Needle shape prediction was performed in single-layer and double-layer homogeneous phantom tissue for C- and S-shaped needle insertions. Our method demonstrates an average root-mean-square prediction error of 1.03 mm over a dataset containing approximately 3000 prediction samples with the maximum prediction steps of 110 mm.
引用
收藏
页码:18359 / 18371
页数:13
相关论文
共 50 条
  • [1] An efficient hybrid weather prediction model based on deep learning
    Utku, A.
    Can, U.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2023, 20 (10) : 11107 - 11120
  • [2] An efficient hybrid weather prediction model based on deep learning
    A. Utku
    U. Can
    International Journal of Environmental Science and Technology, 2023, 20 : 11107 - 11120
  • [3] A Hybrid Spectrum Prediction Model Based on Deep Learning
    Xia, Jing
    Dou, Zheng
    Qi, Lin
    Si, Guangzhen
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 2378 - 2384
  • [4] Model-based Deep Learning for Beam Prediction based on a Channel Chart
    Yassine, Taha
    Chatelier, Baptiste
    Corlay, Vincent
    Crussiere, Matthieu
    Paquelet, Stephane
    Tirkkonen, Olav
    Le Magoarou, Luc
    FIFTY-SEVENTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, IEEECONF, 2023, : 1636 - 1640
  • [5] Prediction of Network Traffic in Wireless Mesh Networks Using Hybrid Deep Learning Model
    Mahajan, Smita
    Harikrishnan, R.
    Kotecha, Ketan
    IEEE ACCESS, 2022, 10 : 7003 - 7015
  • [6] Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction
    Almulihi, Ahmed
    Saleh, Hager
    Hussien, Ali Mohamed
    Mostafa, Sherif
    El-Sappagh, Shaker
    Alnowaiser, Khaled
    Ali, Abdelmgeid A.
    Refaat Hassan, Moatamad
    DIAGNOSTICS, 2022, 12 (12)
  • [7] Model-Based Deep Learning
    Shlezinger, Nir
    Whang, Jay
    Eldar, Yonina C.
    Dimakis, Alexandros G.
    PROCEEDINGS OF THE IEEE, 2023, 111 (05) : 465 - 499
  • [8] Hybrid Deep Learning Model for Earthquake Time Prediction
    Utku, Anil
    Akcayol, Muhammet Ali
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2024, 37 (03): : 1172 - 1188
  • [9] Model-Based Deep Learning: On the Intersection of Deep Learning and Optimization
    Shlezinger, Nir
    Eldar, Yonina C.
    Boyd, Stephen P.
    IEEE ACCESS, 2022, 10 : 115384 - 115398
  • [10] Application of hybrid model-based deep learning and swarm‐based optimizers for flood susceptibility prediction in Binh Dinh province, Vietnam
    Huu Duy Nguyen
    Chien Pham Van
    Anh Duc Do
    Earth Science Informatics, 2023, 16 : 1173 - 1193