A Small Electrolyte Drop Enables a Disruptive Semisolid High-Energy Sulfur Battery Cell Design via an Argyrodite-Based Sulfur Cathode in Combination with a Metallic Lithium Anode

被引:3
作者
Kirchhoff, Sebastian [1 ,2 ]
Fiedler, Magdalena [1 ,2 ]
Dupuy, Arthur [1 ]
Haertel, Paul [1 ]
Semmler, Maria [1 ]
Hippauf, Felix [1 ]
Doerfler, Susanne [1 ]
Schumm, Benjamin [1 ]
Abendroth, Thomas [1 ]
Althues, Holger [1 ]
Kaskel, Stefan [1 ,2 ]
机构
[1] Fraunhofer Inst Mat & Beam Technol IWS, Winterbergstr 28, D-01277 Dresden, Germany
[2] TUD Dresden Univ Technol, Chair Inorgan Chem 1, D-01062 Dresden, Germany
关键词
argyrodites; hydrofluorethers; lithium-sulfur batteries; pouch cells; semisolid concepts;
D O I
10.1002/aenm.202402204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-sulfur batteries with liquid electrolytes are discussed as the most promising post-lithium-ion-battery technology in literature due to their high theoretical specific energy and first prototype cells delivering >470 Wh kg(-1). Although several electrolyte and material concepts are developed that partially solve the issue of the so-called shuttle mechanism, the most promising concept to genuinely confine sulfur species in the cathode is all-solid-state argyrodite-sulfur cathodes leading to almost theoretical active material utilization by maintaining reasonable sulfur loadings and electrolyte to sulfur ratios. However, this battery concept has so far not achieved reversible cycling against metallic lithium anodes as it requires high pressures for manufacturing, and ductile lithium metal creeps along the grain boundaries of the solid electrolyte particles leading to short cuts of the cells. Recent findings show that metallic lithium, however, can be stably cycled with dimethoxyethane/lithium-bis(fluorosulfonyl)imide (DME/LiFSI)-based electrolytes. Herein, for the first time, a semisolid concept is presented combining the benefits of an argyrodite-based solid-state cathode and a DME/LiFSI/hydrofluoroether-based anolyte concept - in coin cells and first pouch cells. This disruptive approach enables projected specific energies higher than 600 Wh kg(-1) at cell stack level.
引用
收藏
页数:11
相关论文
共 46 条
[1]   High-rate operation of sulfur/mesoporous activated carbon composite electrode for all-solid-state lithium-sulfur batteries [J].
Ando, Taka ;
Sato, Yuta ;
Matsuyama, Takuya ;
Sakuda, Atsushi ;
Tatsumisago, Masahiro ;
Hayashi, Akitoshi .
JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, 2020, 128 (05) :233-237
[2]   Lithium-Sulfur Batteries: Attaining the Critical Metrics [J].
Bhargav, Amruth ;
He, Jiarui ;
Gupta, Abhay ;
Manthiram, Arumugam .
JOULE, 2020, 4 (02) :285-291
[3]   Understanding Electrochemical Reaction Mechanisms of Sulfur in All-Solid-State Batteries through Operando and Theoretical Studies [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Fei ;
Bak, Seong-Min ;
Ji, Tongtai ;
Geiwitz, Michael ;
Burch, Kenneth S. ;
Du, Yonghua ;
Yang, Guochun ;
Zhu, Hongli .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (20)
[4]   Review-Localized High-Concentration Electrolytes for Lithium Batteries [J].
Cao, Xia ;
Jia, Hao ;
Xu, Wu ;
Zhang, Ji-Guang .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (01)
[5]   Critical Parameters for Evaluating Coin Cells and Pouch Cells of Rechargeable Li-Metal Batteries [J].
Chen, Shuru ;
Niu, Chaojiang ;
Lee, Hongkyung ;
Li, Qiuyan ;
Yu, Lu ;
Xu, Wu ;
Zhang, Ji-Guang ;
Dufek, Eric J. ;
Whittingham, M. Stanley ;
Meng, Shirley ;
Xiao, Jie ;
Liu, Jun .
JOULE, 2019, 3 (04) :1094-1105
[6]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[7]   Electrolyte Regulation towards Stable Lithium-Metal Anodes in Lithium-Sulfur Batteries with Sulfurized Polyacrylonitrile Cathodes [J].
Chen, Wei-Jing ;
Li, Bo-Quan ;
Zhao, Chang-Xin ;
Zhao, Meng ;
Yuan, Tong-Qi ;
Sun, Run-Cang ;
Huang, Jia-Qi ;
Zhang, Qiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (27) :10732-10745
[8]   Lithium ion conductivity in Li2S-P2S5 glasses - building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7P3S11 and Li4P2S7 [J].
Dietrich, Christian ;
Weber, Dominik A. ;
Sedlmaier, Stefan J. ;
Indris, Sylvio ;
Culver, Sean P. ;
Walter, Dirk ;
Janek, Juergen ;
Zeier, Wolfgang G. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (34) :18111-18119
[9]   Challenges and Key Parameters of Lithium-Sulfur Batteries on Pouch Cell Level [J].
Doerfler, Susanne ;
Althues, Holger ;
Haertel, Paul ;
Abendroth, Thomas ;
Schumm, Benjamin ;
Kaskel, Stefan .
JOULE, 2020, 4 (03) :539-554
[10]   Solvate Ionic Liquid Electrolyte for Li-S Batteries [J].
Dokko, Kaoru ;
Tachikawa, Naoki ;
Yamauchi, Kento ;
Tsuchiya, Mizuho ;
Yamazaki, Azusa ;
Takashima, Eriko ;
Park, Jun-Woo ;
Ueno, Kazuhide ;
Seki, Shiro ;
Serizawa, Nobuyuki ;
Watanabe, Masayoshi .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (08) :A1304-A1310