State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions

被引:2
|
作者
Ke, Xue
Hong, Huawei [1 ]
Zheng, Peng [2 ]
Zhang, Shuling [3 ]
Zhu, Lingling [2 ]
Li, Zhicheng [3 ]
Cai, Jiaxin [4 ]
Fan, Peixiao
Yang, Jun
Wang, Jun
Li, Li [5 ,6 ]
Kuai, Chunguang [1 ]
Guo, Yuzheng [1 ,5 ,6 ,7 ]
机构
[1] Wuhan Univ, Sch Elect Engn & Automat, Wuhan 430072, Peoples R China
[2] State Grid Fujian Elect Power Co, Mkt Serv Ctr, Fuzhou 350001, Peoples R China
[3] State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[4] State Grid Fujian Elect Power Co Ltd, Elect Power Res Inst, Fuzhou 350007, Peoples R China
[5] Quanzhou Power Supply Co, State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[6] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[7] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
关键词
Lithium-ion battery; State of health estimation; Relaxation voltage; Machine learning; Dynamic conditions; ENERGY-STORAGE; PREDICTION;
D O I
10.1016/j.est.2024.113506
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The data-driven approach accurately estimates the state-of-health of lithium-ion batteries using online data, aiding consumers in operational and maintenance decisions. However, the stochastic charging and discharging behavior in realistic scenarios leads to continuous transient processes that render conventional features undetectable or exacerbate fluctuations. Here, we use domain knowledge and equivalent circuit modeling to investigate the extraction of physical features of aging through a relatively stable relaxation process under dynamic conditions. Our study uses 16-cell data from the National Aeronautics and Space Administration randomized dataset and compares four basic data-driven models for validation. The results show that incorporating a limited set of previous discharge step information significantly enhances model robustness and accuracy. The bestperforming model, auto-relevance determination gaussian process regression, achieves a low root mean square error of 1.94 %. Physically interpretable features do not rely on historical data, require a smaller sample size, and exhibit greater generalizability across different current scenarios. This method does not depend on a specific charging method, making it practical and adaptable. Therefore, the data-driven approach utilizing relaxation voltages and correlation features offers a viable solution for accurately estimating the health state of lithium-ion batteries under dynamic conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] State-of-Health Estimation for Lithium-Ion Batteries in Hybrid Electric Vehicles-A Review
    Zhang, Jianyu
    Li, Kang
    ENERGIES, 2024, 17 (22)
  • [22] State-of-health estimation for lithium-ion batteries under complex charging conditions based on SDE-BiLSTM model
    Yu, Xianpeng
    Tang, Tianqi
    Song, Zhichao
    He, Yurong
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [23] Deep learning model-based real-time state-of-health estimation of lithium-ion batteries under dynamic operating conditions
    Tang, Telu
    Yang, Xiangguo
    Li, Muheng
    Li, Xin
    Huang, Hai
    Guan, Cong
    Huang, Jiangfan
    Wang, Yufan
    Zhou, Chaobin
    ENERGY, 2025, 317
  • [24] Dynamic Equivalent Circuit Model to Estimate State-of-Health of Lithium-Ion Batteries
    Amir, Shehla
    Gulzar, Moneeba
    Tarar, Muhammad O.
    Naqvi, Ijaz H.
    Zaffar, Nauman A.
    Pecht, Michael G.
    IEEE ACCESS, 2022, 10 : 18279 - 18288
  • [25] A fast state-of-health estimation method using single linear feature for lithium-ion batteries
    Shi, Mingjie
    Xu, Jun
    Lin, Chuanping
    Mei, Xuesong
    ENERGY, 2022, 256
  • [26] A novel data-model fusion state-of-health estimation approach for lithium-ion batteries
    Ma, Zeyu
    Yang, Ruixin
    Wang, Zhenpo
    APPLIED ENERGY, 2019, 237 : 836 - 847
  • [27] State-of-health estimation of lithium-ion batteries for electrified vehicles using a reduced-order electrochemical model
    Hosseininasab, Seyedmehdi
    Lin, Changwei
    Pischinger, Stefan
    Stapelbroek, Michael
    Vagnoni, Giovanni
    JOURNAL OF ENERGY STORAGE, 2022, 52
  • [28] Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles
    Meng, Jinhao
    Cai, Lei
    Stroe, Daniel-Ioan
    Luo, Guangzhao
    Sui, Xin
    Teodorescu, Remus
    ENERGY, 2019, 185 : 1054 - 1062
  • [29] Onboard Health Estimation using Distribution of Relaxation Times for Lithium-ion Batteries
    Khan, Muhammad Aadil
    Thatipamula, Sai
    Onori, Simona
    IFAC PAPERSONLINE, 2024, 58 (28): : 917 - 922
  • [30] Partial Charging Method for Lithium-Ion Battery State-of-Health Estimation
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Norregaard, Kjeld
    Johnsen, Bjarne
    Christensen, Andreas
    2019 FOURTEENTH INTERNATIONAL CONFERENCE ON ECOLOGICAL VEHICLES AND RENEWABLE ENERGIES (EVER), 2019,