State-of-health estimation for lithium-ion batteries using relaxation voltage under dynamic conditions

被引:2
|
作者
Ke, Xue
Hong, Huawei [1 ]
Zheng, Peng [2 ]
Zhang, Shuling [3 ]
Zhu, Lingling [2 ]
Li, Zhicheng [3 ]
Cai, Jiaxin [4 ]
Fan, Peixiao
Yang, Jun
Wang, Jun
Li, Li [5 ,6 ]
Kuai, Chunguang [1 ]
Guo, Yuzheng [1 ,5 ,6 ,7 ]
机构
[1] Wuhan Univ, Sch Elect Engn & Automat, Wuhan 430072, Peoples R China
[2] State Grid Fujian Elect Power Co, Mkt Serv Ctr, Fuzhou 350001, Peoples R China
[3] State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[4] State Grid Fujian Elect Power Co Ltd, Elect Power Res Inst, Fuzhou 350007, Peoples R China
[5] Quanzhou Power Supply Co, State Grid Fujian Elect Power Co, Fuzhou 350001, Peoples R China
[6] Wuhan Univ, Inst Technol Sci, Wuhan 430072, Peoples R China
[7] Wuhan Univ, Hubei Key Lab Elect Mfg & Packaging Integrat, Wuhan 430072, Peoples R China
关键词
Lithium-ion battery; State of health estimation; Relaxation voltage; Machine learning; Dynamic conditions; ENERGY-STORAGE; PREDICTION;
D O I
10.1016/j.est.2024.113506
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The data-driven approach accurately estimates the state-of-health of lithium-ion batteries using online data, aiding consumers in operational and maintenance decisions. However, the stochastic charging and discharging behavior in realistic scenarios leads to continuous transient processes that render conventional features undetectable or exacerbate fluctuations. Here, we use domain knowledge and equivalent circuit modeling to investigate the extraction of physical features of aging through a relatively stable relaxation process under dynamic conditions. Our study uses 16-cell data from the National Aeronautics and Space Administration randomized dataset and compares four basic data-driven models for validation. The results show that incorporating a limited set of previous discharge step information significantly enhances model robustness and accuracy. The bestperforming model, auto-relevance determination gaussian process regression, achieves a low root mean square error of 1.94 %. Physically interpretable features do not rely on historical data, require a smaller sample size, and exhibit greater generalizability across different current scenarios. This method does not depend on a specific charging method, making it practical and adaptable. Therefore, the data-driven approach utilizing relaxation voltages and correlation features offers a viable solution for accurately estimating the health state of lithium-ion batteries under dynamic conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] State of Health Estimation of Lithium-Ion Batteries in Electric Vehicles under Dynamic Load Conditions
    Ezemobi, Ethelbert
    Silvagni, Mario
    Mozaffari, Ahmad
    Tonoli, Andrea
    Khajepour, Amir
    ENERGIES, 2022, 15 (03)
  • [2] Online state-of-health estimation of lithium-ion batteries using Dynamic Bayesian Networks
    He, Zhiwei
    Gao, Mingyu
    Ma, Guojin
    Liu, Yuanyuan
    Chen, Sanxin
    JOURNAL OF POWER SOURCES, 2014, 267 : 576 - 583
  • [3] A Computationally Efficient Approach for the State-of-Health Estimation of Lithium-Ion Batteries
    Qin, Haochen
    Fan, Xuexin
    Fan, Yaxiang
    Wang, Ruitian
    Shang, Qianyi
    Zhang, Dong
    ENERGIES, 2023, 16 (14)
  • [4] Voltage relaxation-based state-of-health estimation of lithium-ion batteries using convolutional neural networks and transfer learning
    Zhang, Shaowen
    Zhu, Haiping
    Wu, Jun
    Chen, Zhipeng
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [5] A State of Health Estimation Method for Lithium-Ion Batteries Based on Voltage Relaxation Model
    Fang, Qiaohua
    Wei, Xuezhe
    Lu, Tianyi
    Dai, Haifeng
    Zhu, Jiangong
    ENERGIES, 2019, 12 (07)
  • [6] Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use
    Yu, Jinsong
    Mo, Baohua
    Tang, Diyin
    Yang, Jie
    Wan, Jiuqing
    Liu, Jingjing
    ENERGIES, 2017, 10 (12)
  • [7] Degradation mechanism analysis and State-of-Health estimation for lithium-ion batteries based on distribution of relaxation times
    Zhang, Qi
    Wang, Dafang
    Schaltz, Erik
    Stroe, Daniel-Ioan
    Gismero, Alejandro
    Yang, Bowen
    JOURNAL OF ENERGY STORAGE, 2022, 55
  • [8] Feature parameter extraction and intelligent estimation of the State-of-Health of lithium-ion batteries
    Deng, Yuanwang
    Ying, Hejie
    Jiaqiang, E.
    Zhu, Hao
    Wei, Kexiang
    Chen, Jingwei
    Zhang, Feng
    Liao, Gaoliang
    ENERGY, 2019, 176 : 91 - 102
  • [9] Domain generalization-based state-of-health estimation of lithium-ion batteries
    Chen, Liping
    Bao, Xinyuan
    Lopes, Antonio M.
    Li, Xin
    Kong, Huifang
    Chai, Yi
    Li, Penghua
    JOURNAL OF POWER SOURCES, 2024, 610
  • [10] Research on State-of-Health Estimation for Lithium-Ion Batteries Based on the Charging Phase
    Du, Changqing
    Qi, Rui
    Ren, Zhong
    Xiao, Di
    ENERGIES, 2023, 16 (03)