Enhancing low-temperature lithium-ion battery performance under high-rate conditions with niobium oxides

被引:5
作者
Pogue, Elizabeth A. [1 ]
Langevin, Spencer A. [1 ]
Hamann, Tanner [1 ]
Rao, Karun K. [1 ]
Schroeder, Marshall A. [3 ]
Le, Nam Q. [1 ]
Mchale, Courtney [1 ]
Burchfield, Zachary [2 ]
Ko, Jesse S. [1 ]
机构
[1] Johns Hopkins Univ, Res & Exploratory Dev Dept, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[2] Johns Hopkins Univ, Appl Phys Lab, Air & Missile Def Sect, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[3] DEVCOM Army Res Lab, Battery Sci Branch, Adelphi, MD 20783 USA
关键词
Lithium-ion battery; Low-temperature operation; High rate capability; Niobium oxide; CONDUCTIVITY; ELECTROLYTE; INSERTION; NB12O29; NB2O5;
D O I
10.1016/j.mtener.2024.101663
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Low-temperature operation (-20 degrees C and below) under high-rate conditions is a critical deficiency for lithium-ion batteries. To achieve size, weight, and power requirements tailored for demanding applications, novel materials are needed to sustain high performance. In the present study, we synthesize a series of niobate anode materials (Nb2O5, Nb2O5-x, and Nb12O29) and tailor their particle size, defect nature, and electrical/ionic conductivity to enable high-performance operation at -20 degrees C under high-rate conditions (1.2C-2C). When paired with lithium manganese oxide (LMO) in a full-cell configuration, the Nb2O5-x-based full-cells achieve high-rate capability (similar to 90 mAh/g up to 2C cycling rate at -20 degrees C) and great long-term stability (>98% retention up to 50 cycles at -20 degrees C). During a simulated 30 min duty cycling test synthesized from measured data from an actual drone flight (continuous range of 1.2C-2C cycling rates), the Nb2O5-x||LMO cell enables full discharge at -20 degrees C, with only a 0.3 V voltage drop when compared to duty cycling at room temperature. The work presented herein demonstrates the future possibilities of expanding the operational capabilities of lithium-ion batteries.
引用
收藏
页数:12
相关论文
共 53 条
[1]  
[Anonymous], 2020, NIST Standard Reference Database Number 205
[2]   Lithium-ion batteries for low-temperature applications: Limiting factors and solutions [J].
Belgibayeva, Ayaulym ;
Rakhmetova, Aiym ;
Rakhatkyzy, Makpal ;
Kairova, Meruyert ;
Mukushev, Ilyas ;
Issatayev, Nurbolat ;
Kalimuldina, Gulnur ;
Nurpeissova, Arailym ;
Sun, Yang-Kook ;
Bakenov, Zhumabay .
JOURNAL OF POWER SOURCES, 2023, 557
[3]   On the lithiation reaction of niobium oxide: structural and electronic properties of Li1.714Nb2O5 [J].
Catti, Michele ;
Ghaani, Mohammad R. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (04) :1385-1392
[4]   ANTIFERROMAGNETISM AND METALLIC CONDUCTIVITY IN NB12O29 [J].
CAVA, RJ ;
BATLOGG, B ;
KRAJEWSKI, JJ ;
GAMMEL, P ;
POULSEN, HF ;
PECK, WF ;
RUPP, LW .
NATURE, 1991, 350 (6319) :598-600
[5]   LITHIUM INSERTION IN WADSLEY-ROTH PHASES BASED ON NIOBIUM OXIDE [J].
CAVA, RJ ;
MURPHY, DW ;
ZAHURAK, SM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1983, 130 (12) :2345-2351
[6]   Enhancing the low-temperature performance in lithium ion batteries of Nb2O5 by combination of W doping and MXene addition [J].
Chen, Yao ;
Pu, Ziyan ;
Liu, Yuebin ;
Shen, Yuxi ;
Liu, Shimin ;
Liu, Di ;
Li, Yueming .
JOURNAL OF POWER SOURCES, 2021, 515
[7]   Alternative anodes for low temperature lithium-ion batteries [J].
Collins, Gearoid A. ;
Geaney, Hugh ;
Ryan, Kevin M. .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (25) :14172-14213
[8]  
Deng BW, 2023, Arxiv, DOI arXiv:2302.14231
[9]   Sodium Niobate with a Large Interlayer Spacing: A Fast-Charging, Long-Life, and Low-Temperature Friendly Lithium-Storage Material [J].
Gao, Jiazhe ;
Yang, Liting ;
Huang, Cihui ;
Liang, Guisheng ;
Lei, Yi ;
Li, Songjie ;
Wang, Wenze ;
Ou, Yinjun ;
Gao, Shangfu ;
Liu, Xuehua ;
Cheng, Yifeng ;
Zhang, Jincang ;
Liu, Zhongzhu ;
Guo, Aiming ;
Monteiro, Robson ;
Parreira, Luanna ;
Ribas, Rogerio ;
Lin, Chunfu ;
Wu, Limin ;
Che, Renchao .
ADVANCED SCIENCE, 2023, 10 (20)
[10]   Classical and Emerging Characterization Techniques for Investigation of Ion Transport Mechanisms in Crystalline Fast Ionic Conductors [J].
Gao, Yirong ;
Nolan, Adelaide M. ;
Du, Peng ;
Wu, Yifan ;
Yang, Chao ;
Chen, Qianli ;
Mo, Yifei ;
Bo, Shou-Hang .
CHEMICAL REVIEWS, 2020, 120 (13) :5954-6008