Flexural fatigue behavior of ultra-high performance fiber reinforced concrete

被引:1
|
作者
Deng, Pengru [1 ]
Kuwagaki, Junya [2 ]
Matsumoto, Takashi [3 ]
机构
[1] Cent South Univ, Natl Engn Res Ctr High speed Railway Construct Tec, Changsha 410075, Peoples R China
[2] Hokkaido Univ, Grad Sch Engn, Sapporo, Hokkaido 0608628, Japan
[3] Hokkaido Univ, Fac Engn, Sapporo, Hokkaido 0608628, Japan
基金
中国国家自然科学基金;
关键词
UHPFRC; Fatigue; Flexure; Steel fibers; Multiple cracking; CEMENTITIOUS COMPOSITES;
D O I
10.1016/j.conbuildmat.2024.137888
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Even though UHPFRC has been extensively utilized in infrastructures owing to its excellent mechanical properties, its fatigue behavior remains unclear because related research is very limited. In this study, the fatigue characteristics of UHPFRC were investigated using a four-point bending experiment. In this study, the fatigue characteristics of UHPFRC were investigated using a four-point bending experiment. To determine the fatigue load conditions, static tests were conducted at different loading speeds and ages before, during, and after the fatigue tests. The obtained mechanical properties exhibited a clear dependence on loading rate and age duration. Consequently, a loading frequency of 3 Hz, which is close to that experienced in real infrastructures, was employed in the fatigue tests. A linear S-N relation with a 0.87 fatigue endurance limit was obtained on a semilogarithmic scale. Additionally, the fatigue life showed a close relationship with the initial cycle deformation. Correspondingly, threshold values of deformation indicators were proposed for predicting the occurrence of fatigue failure. Furthermore, a linear positive relationship was found between the density of multiple fine cracks and fatigue life, based on post-fatigue crack measurements using a microscope. The relatively narrow crack width compared to other cementitious composites demonstrated UHPFRC's superior resistance to corrosion factors. Consistent with the linear S-N relation, the structural degradation appears to be governed by a fiber slippage-topull mechanism, as no fiber rupture was observed.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Flexural fatigue behavior of ultra-high performance concrete under low temperatures
    Tian, Xin
    Fang, Zhi
    Liu, Shaokun
    Xiang, Yu
    Zhu, Qimu
    Shao, Yi
    CEMENT & CONCRETE COMPOSITES, 2024, 150
  • [2] Flexural behavior of RC beams retrofitted by ultra-high performance fiber-reinforced concrete
    Meraji, Leila
    Afshin, Hasan
    Abedi, Karim
    COMPUTERS AND CONCRETE, 2019, 24 (02) : 159 - 172
  • [3] Flexural behavior of ultra-high performance hybrid fiber reinforced concrete at the ambient and elevated temperature
    Li, Ye
    Yang, En-Hua
    Tan, Kang Hai
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 250
  • [4] Predicting the flexural behavior of ultra-high-performance fiber-reinforced concrete
    Yoo, Doo-Yeol
    Banthia, Nemkumar
    Yoon, Young-Soo
    CEMENT & CONCRETE COMPOSITES, 2016, 74 : 71 - 87
  • [5] Bending and shear behavior of ultra-high performance fiber reinforced concrete
    Magureanu, C.
    Sosa, I.
    Negrutiu, C.
    Heghes, B.
    HIGH PERFORMANCE STRUCTURES AND MATERIALS V, 2010, 112 : 79 - 89
  • [6] Hybrid fiber use on flexural behavior of ultra high performance fiber reinforced concrete beams
    Turker, Kaan
    Hasgul, Umut
    Birol, Tamer
    Yavas, Altug
    Yazici, Halit
    COMPOSITE STRUCTURES, 2019, 229
  • [7] Mechanical degradation of ultra-high performance concrete under flexural fatigue loading
    Cerqueira, Nabila Rezende de Almeida
    Monteiro, Vitor Moreira de Alencar
    Souza, Felipe Rodrigues de
    Cardoso, Daniel Carlos Taissum
    Silva, Flavio de Andrade
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 391
  • [8] Flexural behavior of reinforced concrete beams strengthened with an ultra-high performance concrete panel of various thicknesses
    Kim, Seonhyeok
    Kil, Taegeon
    Shin, Sangmin
    Jang, Daeik
    Yoon, H. N.
    Bae, Jin-Ho
    Seo, Joonho
    Yang, Beomjoo
    COMPUTERS AND CONCRETE, 2023, 32 (05) : 487 - 498
  • [9] On the modeling of tensile behavior of ultra-high performance fiber-reinforced concrete with freezing-thawing actions
    Zhou, Zhidong
    Xie, Ruifeng
    Qiao, Pizhong
    Lu, Linjun
    COMPOSITES PART B-ENGINEERING, 2019, 174
  • [10] Flexural static and high-cycle fatigue behavior of steel fiber-reinforced ultra-high-performance concrete
    Guo, Zhen
    Xu, Zhuang
    Li, Fumin
    Lu, Limin
    Geng, Ou
    JOURNAL OF BUILDING ENGINEERING, 2025, 105