Efficient and Secure Federated Learning Against Backdoor Attacks

被引:10
|
作者
Miao, Yinbin [1 ]
Xie, Rongpeng [1 ]
Li, Xinghua [1 ]
Liu, Zhiquan [1 ,2 ]
Choo, Kim-Kwang Raymond [3 ]
Deng, Robert H. [4 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Cyberdataforce Beijing Technol Ltd, Beijing 100020, Peoples R China
[3] Univ Texas San Antonio, Dept Informat Syst & Cyber Secur, San Antonio, TX 78249 USA
[4] Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Servers; Adaptation models; Artificial neural networks; Training; Gaussian noise; Privacy; Federated learning; Adaptive local differential privacy; backdoor attacks; compressive sensing; federated learning;
D O I
10.1109/TDSC.2024.3354736
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the powerful representation ability and superior performance of Deep Neural Networks (DNN), Federated Learning (FL) based on DNN has attracted much attention from both academic and industrial fields. However, its transmitted plaintext data causes privacy disclosure. FL based on Local Differential Privacy (LDP) solutions can provide privacy protection to a certain extent, but these solutions still cannot achieve adaptive perturbation in DNN model. In addition, this kind of schemes cause high communication overheads due to the curse of dimensionality of DNN, and are naturally vulnerable to backdoor attacks due to the inherent distributed characteristic. To solve these issues, we propose an Efficient and Secure Federated Learning scheme (ESFL) against backdoor attacks by using adaptive LDP and compressive sensing. Formal security analysis proves that ESFL satisfies epsilon-LDP security. Extensive experiments using three datasets demonstrate that ESFL can solve the problems of traditional LDP-based FL schemes without a loss of model accuracy and efficiently resist the backdoor attacks.
引用
收藏
页码:4619 / 4636
页数:18
相关论文
共 50 条
  • [41] Low dimensional secure federated learning framework against poisoning attacks
    Erdol, Eda Sena
    Ustubioglu, Beste
    Erdol, Hakan
    Ulutas, Guzin
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 158 : 183 - 199
  • [42] Data and Model Poisoning Backdoor Attacks on Wireless Federated Learning, and the Defense Mechanisms: A Comprehensive Survey
    Wan, Yichen
    Qu, Youyang
    Ni, Wei
    Xiang, Yong
    Gao, Longxiang
    Hossain, Ekram
    IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2024, 26 (03): : 1861 - 1897
  • [43] Defense against backdoor attack in federated learning
    Lu, Shiwei
    Li, Ruihu
    Liu, Wenbin
    Chen, Xuan
    COMPUTERS & SECURITY, 2022, 121
  • [44] Robust and Secure Federated Learning Against Hybrid Attacks: A Generic Architecture
    Hao, Xiaohan
    Lin, Chao
    Dong, Wenhan
    Huang, Xinyi
    Xiong, Hui
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1576 - 1588
  • [45] BADFL: Backdoor Attack Defense in Federated Learning From Local Model Perspective
    Zhang, Haiyan
    Li, Xinghua
    Xu, Mengfan
    Liu, Ximeng
    Wu, Tong
    Weng, Jian
    Deng, Robert H.
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (11) : 5661 - 5674
  • [46] FMDL: Federated Mutual Distillation Learning for Defending Backdoor Attacks
    Sun, Hanqi
    Zhu, Wanquan
    Sun, Ziyu
    Cao, Mingsheng
    Liu, Wenbin
    ELECTRONICS, 2023, 12 (23)
  • [47] Identifying Backdoor Attacks in Federated Learning via Anomaly Detection
    Mi, Yuxi
    Sun, Yiheng
    Guan, Jihong
    Zhou, Shuigeng
    WEB AND BIG DATA, PT III, APWEB-WAIM 2023, 2024, 14333 : 111 - 126
  • [48] Backdoor attacks and defenses in federated learning: Survey, challenges and future research directions
    Nguyen, Thuy Dung
    Nguyen, Tuan
    Nguyen, Phi Le
    Pham, Hieu H.
    Doan, Khoa D.
    Wong, Kok-Seng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [49] A Verifiable Privacy-Preserving Federated Learning Framework Against Collusion Attacks
    Chen, Yange
    He, Suyu
    Wang, Baocang
    Feng, Zhanshen
    Zhu, Guanghui
    Tian, Zhihong
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (05) : 3918 - 3934
  • [50] SPFL: A Self-Purified Federated Learning Method Against Poisoning Attacks
    Liu, Zizhen
    He, Weiyang
    Chang, Chip-Hong
    Ye, Jing
    Li, Huawei
    Li, Xiaowei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 6604 - 6619