Efficient and Secure Federated Learning Against Backdoor Attacks

被引:10
|
作者
Miao, Yinbin [1 ]
Xie, Rongpeng [1 ]
Li, Xinghua [1 ]
Liu, Zhiquan [1 ,2 ]
Choo, Kim-Kwang Raymond [3 ]
Deng, Robert H. [4 ]
机构
[1] Xidian Univ, Sch Cyber Engn, Xian 710071, Shaanxi, Peoples R China
[2] Cyberdataforce Beijing Technol Ltd, Beijing 100020, Peoples R China
[3] Univ Texas San Antonio, Dept Informat Syst & Cyber Secur, San Antonio, TX 78249 USA
[4] Singapore Management Univ, Sch Informat Syst, Singapore 178902, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Servers; Adaptation models; Artificial neural networks; Training; Gaussian noise; Privacy; Federated learning; Adaptive local differential privacy; backdoor attacks; compressive sensing; federated learning;
D O I
10.1109/TDSC.2024.3354736
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Due to the powerful representation ability and superior performance of Deep Neural Networks (DNN), Federated Learning (FL) based on DNN has attracted much attention from both academic and industrial fields. However, its transmitted plaintext data causes privacy disclosure. FL based on Local Differential Privacy (LDP) solutions can provide privacy protection to a certain extent, but these solutions still cannot achieve adaptive perturbation in DNN model. In addition, this kind of schemes cause high communication overheads due to the curse of dimensionality of DNN, and are naturally vulnerable to backdoor attacks due to the inherent distributed characteristic. To solve these issues, we propose an Efficient and Secure Federated Learning scheme (ESFL) against backdoor attacks by using adaptive LDP and compressive sensing. Formal security analysis proves that ESFL satisfies epsilon-LDP security. Extensive experiments using three datasets demonstrate that ESFL can solve the problems of traditional LDP-based FL schemes without a loss of model accuracy and efficiently resist the backdoor attacks.
引用
收藏
页码:4619 / 4636
页数:18
相关论文
共 50 条
  • [21] Secure Model Aggregation Against Poisoning Attacks for Cross-Silo Federated Learning With Robustness and Fairness
    Mao, Yunlong
    Ye, Zhujing
    Yuan, Xinyu
    Zhong, Sheng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 6321 - 6336
  • [22] Revisiting Personalized Federated Learning: Robustness Against Backdoor Attacks
    Qin, Zeyu
    Yao, Liuyi
    Chen, Daoyuan
    Li, Yaliang
    Ding, Bolin
    Cheng, Minhao
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 4743 - 4755
  • [23] Practical and General Backdoor Attacks Against Vertical Federated Learning
    Xuan, Yuexin
    Chen, Xiaojun
    Zhao, Zhendong
    Tang, Bisheng
    Dong, Ye
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, ECML PKDD 2023, PT II, 2023, 14170 : 402 - 417
  • [24] BadVFL: Backdoor Attacks in Vertical Federated Learning
    Naseri, Mohammad
    Han, Yufei
    De Cristofaro, Emiliano
    45TH IEEE SYMPOSIUM ON SECURITY AND PRIVACY, SP 2024, 2024, : 2013 - 2028
  • [25] Optimally Mitigating Backdoor Attacks in Federated Learning
    Walter, Kane
    Mohammady, Meisam
    Nepal, Surya
    Kanhere, Salil S.
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 2949 - 2963
  • [26] Coordinated Backdoor Attacks against Federated Learning with Model-Dependent Triggers
    Gong, Xueluan
    Chen, Yanjiao
    Huang, Huayang
    Liao, Yuqing
    Wang, Shuai
    Wang, Qian
    IEEE NETWORK, 2022, 36 (01): : 84 - 90
  • [27] Edge-Cloud Collaborative Defense against Backdoor Attacks in Federated Learning
    Yang, Jie
    Zheng, Jun
    Wang, Haochen
    Li, Jiaxing
    Sun, Haipeng
    Han, Weifeng
    Jiang, Nan
    Tan, Yu-An
    SENSORS, 2023, 23 (03)
  • [28] A Robust and Efficient Federated Learning Algorithm Against Adaptive Model Poisoning Attacks
    Yang, Han
    Gu, Dongbing
    He, Jianhua
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 16289 - 16302
  • [29] Trustworthy Federated Learning Against Malicious Attacks in Web 3.0
    Yuan, Zheng
    Tian, Youliang
    Zhou, Zhou
    Li, Ta
    Wang, Shuai
    Xiong, Jinbo
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (05): : 3969 - 3982
  • [30] Efficient and Secure Federated Learning With Verifiable Weighted Average Aggregation
    Yang, Zhen
    Zhou, Ming
    Yu, Haiyang
    Sinnott, Richard O.
    Liu, Huan
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (01): : 205 - 222