Inference of forensic body fluids/tissues based on mitochondrial DNA copy number: a preliminary study

被引:1
|
作者
Li, Ran [1 ,2 ,3 ]
Yang, Jingyi [1 ,3 ]
Wang, Nana [1 ,3 ]
Zang, Yu [1 ,3 ]
Liu, Jiajun [1 ,3 ]
Wu, Enlin [1 ,3 ]
Wu, Riga [1 ,3 ]
Sun, Hongyu [1 ,3 ]
机构
[1] Sun Yat Sen Univ, Fac Forens Med, Zhongshan Sch Med, Guangzhou 510080, Peoples R China
[2] Jiaying Univ, Sch Med, Meizhou 514015, Peoples R China
[3] Sun Yat Sen Univ, Guangdong Prov Translat Forens Med Engn Technol Re, Guangzhou 510080, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Body fluid/tissue inference; Mitochondrial DNA copy number (mtDNAcn); Nuclear DNA; Read ratio; IDENTIFICATION; METHYLATION; MARKERS; FLUID; BLOOD; RNA;
D O I
10.1007/s00414-024-03317-w
中图分类号
DF [法律]; D9 [法律]; R [医药、卫生];
学科分类号
0301 ; 10 ;
摘要
The inference of body fluids and tissues is critical in reconstructing crime scenes and inferring criminal behaviors. Nevertheless, present methods are incompatible with conventional DNA genotyping, and additional testing might result in excessive consumption of forensic scene materials. This study aims to investigate the feasibility of distinguishing common body fluids/tissues through the difference in mitochondrial DNA copy number (mtDNAcn). Four types of body fluids/tissues were analyzed in this study - hair, saliva, semen, and skeletal muscle. MtDNAcn was estimated by dividing the read counts of mitochondrial DNA to that of nuclear DNA (RRmt/nu). Results indicated that there were significant differences in RRmt/nu between different body fluids/tissues. Specifically, hair samples exhibited the highest RRmt/nu (log(10)RR(mt/nu): 4.3 +/- 0.28), while semen samples showed the lowest RRmt/nu (log(10)RR(mt/nu): -0.1 +/- 0.28). RRmt/nu values for DNA samples without extraction were notably higher (approximately 2.9 times) than those obtained after extraction. However, no significant difference in RRmt/nu was observed between various age and gender groups. Hierarchical clustering and Kmeans clustering analyses showed that body fluids/tissues of the same type clustered closely to each other and could be inferred with high accuracy. In conclusion, this study demonstrated that the simultaneous detection of nuclear and mitochondrial DNA made it possible to perform conventional DNA analyses and body fluid/tissue inference at the same time, thus killing two birds with one stone. Furthermore, mtDNAcn has the potential to serve as a novel and promising biomarker for the identification of body fluids/tissues.
引用
收藏
页码:2315 / 2324
页数:10
相关论文
共 50 条
  • [31] Mitochondrial DNA copy number in patients with systemic sclerosis
    Bogatyreva, Anastasia I.
    Gerasimova, Elena V.
    Kirichenko, Tatiana V.
    Markina, Yuliya V.
    Tolstik, Taisiya V.
    Kiseleva, Diana G.
    Popkova, Tatiana V.
    Markin, Alexander M.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2023, 10
  • [32] Leukocyte mitochondrial DNA copy number in bipolar disorder
    de Sousa, Rafael T.
    Uno, Miyuki
    Zanetti, Marcus V.
    Shinjo, Sueli M. O.
    Busatto, Geraldo F.
    Gattaz, Wagner F.
    Marie, Sueli K. N.
    Machado-Vieira, Rodrigo
    PROGRESS IN NEURO-PSYCHOPHARMACOLOGY & BIOLOGICAL PSYCHIATRY, 2014, 48 : 32 - 35
  • [33] Association of Mitochondrial DNA Copy Number With Cardiovascular Disease
    Ashar, Foram N.
    Zhang, Yiyi
    Longchamps, Ryan J.
    Lane, John
    Moes, Anna
    Grove, Megan L.
    Mychaleckyj, Josyf C.
    Taylor, Kent D.
    Coresh, Josef
    Rotter, Jerome I.
    Boerwinkle, Eric
    Pankratz, Nathan
    Guallar, Eliseo
    Arking, Dan E.
    JAMA CARDIOLOGY, 2017, 2 (11) : 1247 - 1255
  • [34] Mitochondrial DNA copy number changes in human gliomas
    Liang, BC
    Hays, L
    CANCER LETTERS, 1996, 105 (02) : 167 - 173
  • [35] Mitochondrial DNA copy number and incident atrial fibrillation
    Zhao, Di
    Bartz, Traci M.
    Sotoodehnia, Nona
    Post, Wendy S.
    Heckbert, Susan R.
    Alonso, Alvaro
    Longchamps, Ryan J.
    Castellani, Christina A.
    Hong, Yun Soo
    Rotter, Jerome I.
    Lin, Henry J.
    O'Rourke, Brian
    Pankratz, Nathan
    Lane, John A.
    Yang, Stephanie Y.
    Guallar, Eliseo
    Arking, Dan E.
    BMC MEDICINE, 2020, 18 (01)
  • [36] Association of mitochondrial DNA copy number with cardiometabolic diseases
    Liu, Xue
    Longchamps, Ryan J.
    Wiggins, Kerri L.
    Raffield, Laura M.
    Bielak, Lawrence F.
    Zhao, Wei
    Pitsillides, Achilleas
    Blackwell, Thomas W.
    Yao, Jie
    Guo, Xiuqing
    Kurniansyah, Nuzulul
    Thyagarajan, Bharat
    Pankratz, Nathan
    Rich, Stephen S.
    Taylor, Kent D.
    Peyser, Patricia A.
    Heckbert, Susan R.
    Seshadri, Sudha
    Cupples, L. Adrienne
    Boerwinkle, Eric
    Grove, Megan L.
    Larson, Nicholas
    Smith, Jennifer A.
    Vasan, Ramachandran S.
    Sofer, Tamar
    Fitzpatrick, Annette L.
    Fornage, Myriam
    Ding, Jun
    Correa, Adolfo
    Abecasis, Goncalo
    Psaty, Bruce M.
    Wilson, James G.
    Levy, Daniel
    Rotter, Jerome I.
    Bis, Joshua C.
    Satizabal, Claudia L.
    Arking, Dan E.
    Liu, Chunyu
    CELL GENOMICS, 2021, 1 (01):
  • [37] The regulation of mitochondrial DNA copy number in glioblastoma cells
    Dickinson, A.
    Yeung, K. Y.
    Donoghue, J.
    Baker, M. J.
    Kelly, R. D. W.
    McKenzie, M.
    Johns, T. G.
    St John, J. C.
    CELL DEATH AND DIFFERENTIATION, 2013, 20 (12): : 1644 - 1653
  • [38] A model to predict a risk of allergic rhinitis based on mitochondrial DNA copy number
    Huajie Yuan
    Jiang Su
    Song Wang
    Lingling Wang
    Wei Zhou
    Bo Zhang
    Haisu Yan
    Yuping Yang
    Hua Zhang
    European Archives of Oto-Rhino-Laryngology, 2022, 279 : 4997 - 5008
  • [39] Mitochondrial DNA Copy Number in Spermatozoa of Fertile Stallions
    Orsztynowicz, M.
    Pawlak, P.
    Podstawski, Z.
    Nizanski, W.
    Partyka, A.
    Gotowiecka, M.
    Kosiniak-Kamysz, K.
    Lechniak, D.
    REPRODUCTION IN DOMESTIC ANIMALS, 2016, 51 (03) : 378 - 385
  • [40] Global Genetic Determinants of Mitochondrial DNA Copy Number
    Zhang, Hengshan
    Singh, Keshav K.
    PLOS ONE, 2014, 9 (08):