Exploring the Potential of Silicon Tetrachloride as an Additive in CO2-Based Binary Mixtures in Transcritical Organic Rankine Cycle-A Comparative Study with Traditional Hydrocarbons

被引:0
作者
Alazwari, Mashhour A. [1 ]
Siddiqui, Muhammad Ehtisham [1 ]
机构
[1] King Abdulaziz Univ, Fac Engn, Mech Engn Dept, Jeddah 21589, Saudi Arabia
关键词
organic rankine cycle; thermal efficiency; carbon dioxide; mixture optimization; specific net power output; binary mixtures; energy conversion systems; WASTE HEAT-RECOVERY; WORKING FLUID SELECTION; ZEOTROPIC MIXTURES; THERMODYNAMIC ANALYSIS; THERMAL-STABILITY; POWER-GENERATION; ENERGY; OPTIMIZATION; ORC; CONVERSION;
D O I
10.3390/pr12071507
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Carbon dioxide (CO2) has been recognized as one of the potential working fluids to operate power generation cycles, either in supercritical or transcritical configuration. However, a small concentration of some of the additives to CO2 have shown promising improvements in the overall performance of the cycle. The current study is motivated by the newly proposed additive silicon tetrachloride (SiCl4), and so we perform a detailed investigation of SiCl4 along with a few well-known additives to CO2-based binary mixtures as a working fluid in transcritical organic Rankine cycle setup with internal heat regeneration. The additives selected for the study are pentane, cyclopentane, cyclohexane, and silicon tetrachloride (SiCl4). A comprehensive study on the energy and exergy performance of the cycle for warm regions is conducted at a turbine inlet temperature of 250 degrees C. The performance of the heat recovery unit is also assessed to highlight its importance in comparison to a simple configuration of the cycle. This study shows that the cycle operating with binary mixtures performs significantly better than with pure CO2, which is mainly due to its better heat recovery in the heat recovery unit. The results show that the optimal molar concentration of the additives is in between 20% and 25%. Besides having better thermal stability, SiCl4 shows an improvement in the cycle thermal efficiency by 6% points which is comparable to cyclopentane (7.3% points) and cyclohexane (7.8% points). The optimal cycle pressure ratio for SiCl4 is also relatively lower than for other additives. The energy efficiency of the cycle with pure CO2 is around 45% which is also increased to 58%, 63%, 64%, 60% with pentane, cyclopentane, cyclohexane, and SiCl4, respectively. These results suggest that additives like SiCl4 could make CO2-based cycles more viable for power generation in warm regions.
引用
收藏
页数:14
相关论文
共 52 条
  • [1] Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues
    Abadi, Gholamreza Bamorovat
    Kim, Kyung Chun
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2017, 73 : 1000 - 1013
  • [2] A review on solar Rankine cycles: Working fluids, applications, and cycle modifications
    Aboelwafa, Omar
    Fateen, Seif-Eddeen K.
    Soliman, Ahmed
    Ismail, Ibrahim M.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2018, 82 : 868 - 885
  • [3] Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower
    Al-Sulaiman, Fahad A.
    Atif, Maimoon
    [J]. ENERGY, 2015, 82 : 61 - 71
  • [4] Astolfi M, 2017, WOODHEAD PUBL SER EN, P173, DOI 10.1016/B978-0-08-100510-1.00007-7
  • [5] Low global warming potential (GWP) working fluids (WFs) for Organic Rankine Cycle (ORC) applications
    Bahrami, Mohammad
    Pourfayaz, Fathollah
    Kasaeian, Alibakhsh
    [J]. ENERGY REPORTS, 2022, 8 : 2976 - 2988
  • [6] A review of working fluid and expander selections for organic Rankine cycle
    Bao, Junjiang
    Zhao, Li
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 24 : 325 - 342
  • [7] Bell IH, 2017, WOODHEAD PUBL SER EN, P91, DOI 10.1016/B978-0-08-100510-1.00004-1
  • [8] Optimization of Organic Rankine Cycles for Waste Heat Recovery From Aluminum Production Plants
    Castelli, Alessandro Francesco
    Elsido, Cristina
    Scaccabarozzi, Roberto
    Nord, Lars O.
    Martelli, Emanuele
    [J]. FRONTIERS IN ENERGY RESEARCH, 2019, 7 (JUN)
  • [9] A review of thermodynamic cycles and working fluids for the conversion of low-grade heat
    Chen, Huijuan
    Goswami, D. Yogi
    Stefanakos, Elias K.
    [J]. RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (09) : 3059 - 3067
  • [10] Supercritical carbon dioxide cycles for power generation: A review
    Crespi, Francesco
    Gavagnin, Giacomo
    Sanchez, David
    Martinez, Gonzalo S.
    [J]. APPLIED ENERGY, 2017, 195 : 152 - 183