Bayesian Calibration to Address the Challenge of Antimicrobial Resistance: A Review

被引:0
|
作者
Rosato, Conor [1 ]
Green, Peter L. [2 ]
Harris, John [3 ]
Maskell, Simon [4 ]
Hope, William [1 ]
Gerada, Alessandro [1 ]
Howard, Alex [1 ]
机构
[1] Univ Liverpool, Dept Pharmacol & Therapeut, Liverpool L69 7BE, England
[2] Univ Liverpool, Dept Mech Engn, Liverpool L69 7BE, England
[3] United Kingdom Hlth Secur Agcy UKHSA, London SW1P 3JR, England
[4] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 7BE, England
来源
IEEE ACCESS | 2024年 / 12卷
基金
英国惠康基金; 英国工程与自然科学研究理事会;
关键词
Bayes methods; Reviews; Pathogens; Resistance; Immune system; Data models; Computational modeling; Monte Carlo methods; Epidemiology; Antimicrobial resistance; antimicrobial stewardship; approximate Bayesian computation; Bayesian inference; epidemiology; Markov chain Monte Carlo; sequential Monte Carlo; ESCHERICHIA-COLI; TRANSMISSION; PATHOGENS; MODEL; COMPUTATION; ENTEROCOCCI; IMPACT;
D O I
10.1109/ACCESS.2024.3427410
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Antimicrobial resistance (AMR) emerges when disease-causing microorganisms develop the ability to withstand the effects of antimicrobial therapy. This phenomenon is often fueled by the human-to-human transmission of pathogens and the overuse of antibiotics. Over the past 50 years, increased computational power has facilitated the application of Bayesian inference algorithms. In this comprehensive review, the basic theory of Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) methods are explained. These inference algorithms are instrumental in calibrating complex statistical models to the vast amounts of AMR-related data. Popular statistical models include hierarchical and mixture models as well as discrete and stochastic epidemiological compartmental and agent based models. Studies encompassed multi-drug resistance, economic implications of vaccines, and modeling AMR in vitro as well as within specific populations. We describe how combining these topics in a coherent framework can result in an effective antimicrobial stewardship. We also outline recent advancements in the methodology of Bayesian inference algorithms and provide insights into their prospective applicability for modeling AMR in the future.
引用
收藏
页码:100772 / 100791
页数:20
相关论文
共 50 条
  • [21] Control of Antimicrobial Resistance Requires an Ethical Approach
    Ben Parsonage
    Hagglund, Philip K.
    Keogh, Lloyd
    Wheelhouse, Nick
    Brown, Richard E.
    Dancer, Stephanie J.
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [22] Global research output in antimicrobial resistance among uropathogens: A bibliometric analysis (2002-2016)
    Sweileh, Waleed M.
    Al-Jabi, Samah W.
    Zyoud, Sa'ed H.
    Sawalha, Ansam E.
    Abu-Taha, Adham S.
    JOURNAL OF GLOBAL ANTIMICROBIAL RESISTANCE, 2018, 13 : 104 - 114
  • [23] Burden of Antimicrobial Resistance in Japan: A Systematic Literature Review and Meta-Analysis
    Matsumoto, Tetsuya
    Yuasa, Akira
    Matsuda, Hiroyuki
    Ainiwaer, Dilinuer
    Yonemoto, Naohiro
    INFECTIOUS DISEASES AND THERAPY, 2024, 13 (05) : 1105 - 1125
  • [24] Pets and Antimicrobial Resistance
    Umber, Jamie K.
    Bender, Jeff B.
    VETERINARY CLINICS OF NORTH AMERICA-SMALL ANIMAL PRACTICE, 2009, 39 (02) : 279 - +
  • [25] Review of antimicrobial resistance surveillance programmes in livestock and meat in EU with focus on humans
    Schrijver, R.
    Stijntjes, M.
    Rodriguez-Bano, J.
    Tacconelli, E.
    Rajendran, N. Babu
    Voss, A.
    CLINICAL MICROBIOLOGY AND INFECTION, 2018, 24 (06) : 577 - 590
  • [26] Antimicrobial Resistance in Nepal
    Acharya, Krishna Prasad
    Wilson, R. Trevor
    FRONTIERS IN MEDICINE, 2019, 6
  • [27] Antimicrobial resistance in wildlife
    Vittecoq, Marion
    Godreuil, Sylvain
    Prugnolle, Franck
    Durand, Patrick
    Brazier, Lionel
    Renaud, Nicolas
    Arnal, Audrey
    Aberkane, Salim
    Jean-Pierre, Helene
    Gauthier-Clerc, Michel
    Thomas, Frederic
    Renaud, Francois
    JOURNAL OF APPLIED ECOLOGY, 2016, 53 (02) : 519 - 529
  • [28] Antimicrobial resistance among uropathogens in the Asia-Pacific region: a systematic review
    Sugianli, Adhi Kristianto
    Ginting, Franciscus
    Parwati, Ida
    de Jong, Menno D.
    van Leth, Frank
    Schultsz, Constance
    JAC-ANTIMICROBIAL RESISTANCE, 2021, 3 (01):
  • [29] Dynamic Calibration Based on the Black-Scholes Option Pricing Model by Bayesian Method
    Mulenga, Norris M.
    Fu, Yu
    IEEE ACCESS, 2024, 12 : 119314 - 119326
  • [30] Antimicrobial resistance in Cambodia: a review
    Reed, Thomas A. N.
    Krang, Sidonn
    Miliya, Thyl
    Townell, Nicola
    Letchford, Joanne
    Bun, Sreng
    Sar, Borann
    Osbjer, Kristina
    Seng, Sokerya
    Chou, Monidarin
    By, Youlet
    Vanchinsuren, Lkhagvadorj
    Nov, Vandarith
    Chau, Darapheak
    Thong Phe
    de Lauzanne, Agathe
    Ly, Sovann
    Turner, Paul
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2019, 85 : 98 - 107