Automatic Lung Segmentation in Chest X-Ray Images Using SAM With Prompts From YOLO

被引:1
作者
Khalili, Ebrahim [1 ,2 ]
Priego-Torres, Blanca [1 ,2 ]
Leon-Jimenez, Antonio [2 ,3 ]
Sanchez-Morillo, Daniel [1 ,2 ]
机构
[1] Univ Cadiz, Dept Engn Automat Elect & Comp Architecture & Netw, Puerto Real 11519, Spain
[2] Biomed Res & Innovat Inst Cadiz INiBICA, Cadiz 11009, Spain
[3] Puerta del Mar Univ Hosp, Pulmonol Dept, Cadiz 11009, Spain
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Lung; Image segmentation; Solid modeling; Data models; X-ray imaging; YOLO; Biomedical imaging; Deep learning; Biomedical X-ray imaging; image segmentation; lung; deep learning; CHALLENGES;
D O I
10.1109/ACCESS.2024.3454188
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Despite the impressive performance of current deep learning models in the field of medical imaging, transferring the lung segmentation task in X-ray images to clinical practice is still a pending task. In this study, the performance of a fully automatic framework for lung field segmentation in chest X-ray images was evaluated. The framework is rooted in the combination of the Segment Anything Model (SAM) with prompt capabilities, and the You Only Look Once (YOLO) model to provide effective prompts. Transfer learning, loss functions, and several validation strategies were thoroughly assessed. This provided a complete benchmark that enabled future research studies to fairly compare new segmentation strategies. The results achieved demonstrated significant robustness and generalization capability against the variability in sensors, populations, disease manifestations, device processing, and imaging conditions. The proposed framework was computationally efficient, could address bias in training over multiple datasets, and had the potential to be applied across other domains and modalities.
引用
收藏
页码:122805 / 122819
页数:15
相关论文
共 50 条
  • [1] YOLO-Based Image Segmentation for the Diagnostic of Spondylolisthesis From Lumbar Spine X-Ray Images
    Vephasayanant, Arnik
    Jitpattanakul, Anuchit
    Muneesawang, Paisarn
    Wongpatikaseree, Konlakorn
    Hnoohom, Narit
    IEEE ACCESS, 2024, 12 : 182242 - 182258
  • [2] Segmentation of Chest X-Ray Images Using U-Net Model
    Hashem S.A.
    Kamil M.Y.
    Mendel, 2022, 28 (02): : 49 - 53
  • [3] Automatic Defect Segmentation in X-Ray Images Based on Deep Learning
    Du, Wangzhe
    Shen, Hongyao
    Fu, Jianzhong
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2021, 68 (12) : 12912 - 12920
  • [4] Segmentation of lung region from chest X-ray images using U-net
    Furutani, Keigo
    Hirano, Yasushi
    Kido, Shoji
    INTERNATIONAL FORUM ON MEDICAL IMAGING IN ASIA 2019, 2019, 11050
  • [5] Stochastic Learning-Based Artificial Neural Network Model for an Automatic Tuberculosis Detection System Using Chest X-Ray Images
    Urooj, Shabana
    Suchitra, S.
    Krishnasamy, Lalitha
    Sharma, Neelam
    Pathak, Nitish
    IEEE ACCESS, 2022, 10 : 103632 - 103643
  • [6] An Automatic Approach to Lung Region Segmentation in Chest X-Ray Images Using Adapted U-Net Architecture
    Rahman, Md Fashiar
    Tseng, Tzu-Liang
    Pokojovy, Michael
    Qian, Wei
    Totada, Basavarajaiah
    Xu, Honglun
    MEDICAL IMAGING 2021: PHYSICS OF MEDICAL IMAGING, 2021, 11595
  • [7] Automatic Quantification of Lung Infection Severity in Chest X-ray Images
    Slika, B.
    Dornaika, F.
    Hammoudi, K.
    Hoang, V. T.
    2023 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP, SSP, 2023, : 418 - 422
  • [8] An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks
    Souza, Johnatan Carvalho
    Bandeira Diniz, Joao Otavio
    Ferreira, Jonnison Lima
    Franca da Silva, Giovanni Lucca
    Silva, Aristofanes Correa
    de Paiva, Anselmo Cardoso
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2019, 177 : 285 - 296
  • [9] Image Segmentation for Lung Region in Chest X-ray Images using Edge Detection and Morphology
    Saad, Mohd Nizam
    Muda, Zurina
    Ashaari, Noraidah Sahari
    Hamid, Hamzaini Abdul
    2014 IEEE INTERNATIONAL CONFERENCE ON CONTROL SYSTEM COMPUTING AND ENGINEERING, 2014, : 46 - 51
  • [10] Automatic lung disease classification from the chest X-ray images using hybrid deep learning algorithm
    Farhan, Abobaker Mohammed Qasem
    Yang, Shangming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (25) : 38561 - 38587