Influence of various ion chelators on mechanical, transport and microstructure properties of cement-based materials

被引:0
|
作者
Zhang, Chenchen [1 ]
Ye, Jingyi [1 ]
Liu, Cong [1 ]
Guan, Xinchun [2 ,3 ,4 ]
Li, Jinglu [2 ,3 ,4 ]
Chen, Xin [1 ]
Yuan, Jian [5 ]
机构
[1] Suzhou Univ Sci & Technol, Sch Civil Engn, Suzhou 215011, Peoples R China
[2] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[4] Harbin Inst Technol, Sch Civil Engn, Harbin 150090, Peoples R China
[5] Rocket Force Univ Engn, Acad Combat Support, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
Cement-based materials; Ion chelators; Mechanical properties; Transport properties; CITRIC-ACID; HYDRATION; PERFORMANCE; COMPLEXATION; SYSTEM;
D O I
10.1016/j.cscm.2024.e03709
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Influence mechanism of various ion chelators on the mechanical, transport, and microstructure properties of cement-based materials was explored. The ion chelators included pentasodium diethylenetriamine pentaacetate, tetrasodium ethylenediaminetetraacetate, sodium hexametaphosphate and tetrasodium glutamate diacetate, with a dosage of 1 % of the cement mass. The effect of ion chelators on the mechanical, transport, and pore structure properties was evaluated by compressive, sorptivity, and mercury intrusion porosimetry (MIP) tests. The composition and microstructure of hydration products were studied by scanning electron microscope (SEM) and Xray diffractometer (XRD). Test results indicated that four ion chelators reduced the mechanical and transport properties, and increased the porosity of specimens at 3 d and 7 d. And four ion chelators improved the mechanical and transport properties, and reduced porosity at 28 d and 56 d. The fundamental reason for the differences in the basic properties of cement-based materials caused by the types of ion chelators is that different ion chelators possess various calcium chelating capacities and stability of calcium complexes, which leads to different impact on the complexation substitution reaction process. Moreover, compared to the stability of calcium complexes, the influence of calcium chelating ability on the basic properties of specimens is more significant in the early curing ages.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Influence of nano-silica agglomeration on microstructure and properties of the hardened cement-based materials
    Kong, Deyu
    Du, Xiangfei
    Wei, Su
    Zhang, Hua
    Yang, Yang
    Shah, Surendra P.
    CONSTRUCTION AND BUILDING MATERIALS, 2012, 37 : 707 - 715
  • [22] Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure
    王中平
    LI Haoxin
    蒋正武
    CHEN Qing
    Journal of Wuhan University of Technology(Materials Science), 2017, 32 (06) : 1374 - 1378
  • [23] Mechanical properties and microstructure of graphene oxide cement-based composites
    Peng, Hui
    Ge, Yaping
    Cai, C. S.
    Zhang, Yongxing
    Liu, Zhen
    CONSTRUCTION AND BUILDING MATERIALS, 2019, 194 : 102 - 109
  • [24] Properties of Bamboo Charcoal and Cement-based Composite Materials and Their Microstructure
    Wang Zhongping
    Li Haoxin
    Jiang Zhengwu
    Chen Qing
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2017, 32 (06): : 1374 - 1378
  • [25] Properties of bamboo charcoal and cement-based composite materials and their microstructure
    Zhongping Wang
    Haoxin Li
    Zhengwu Jiang
    Qing Chen
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2017, 32 : 1374 - 1378
  • [26] Influence of Eggshell Powder on the Properties of Cement-Based Materials
    Zhang, Gui-Yu
    Oh, Seokhoon
    Han, Yi
    Meng, Li-Yi
    Lin, Runsheng
    Wang, Xiao-Yong
    MATERIALS, 2024, 17 (07)
  • [27] Influence of fly ash on properties of cement-based materials
    Liu, Baoju
    Xie, Youjun
    1ST INTERNATIONAL SYMPOSIUM ON DESIGN, PERFORMANCE AND USE OF SELF-CONSOLIDATING CONCRETE, 2005, 42 : 557 - 564
  • [28] Review on effects of graphene oxide on mechanical and microstructure of cement-based materials
    Alex, Alexander Gladwin
    Kedir, Amin
    Tewele, Tsegay Gebrehiwet
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 360
  • [29] Effect of biomineralization on the early mechanical properties and microstructure of fly-ash cement-based materials
    Zhang, Wenyan
    Shi, Fanfan
    Zhao, Liya
    Duan, Xiaohang
    Feng, Chunhua
    Su, Faqiang
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 359
  • [30] The influence of surface treatment on the transport properties of hardened calcium sulfoaluminate cement-based materials
    Chen, Heng
    Guo, Zhaoheng
    Hou, Pengkun
    Fu, Xinghua
    Qu, Yupeng
    Li, Qinfei
    Cheng, Xin
    Zhu, Xiaoliang
    CEMENT & CONCRETE COMPOSITES, 2020, 114