PL-Net: progressive learning network for medical image segmentation

被引:1
|
作者
Mao, Kunpeng [1 ]
Li, Ruoyu [2 ]
Cheng, Junlong [2 ]
Huang, Danmei [1 ]
Song, Zhiping [3 ]
Liu, Zekui [3 ]
机构
[1] Chongqing City Management Coll, Chongqing, Peoples R China
[2] Sichuan Univ, Coll Comp Sci, Chengdu, Peoples R China
[3] Chongqing Univ Engn, Chongqing, Peoples R China
来源
FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY | 2024年 / 12卷
关键词
progressive learning; coarse-grained to fine-grained semantic information; complementation and fusion; medical image segmentation; computer version;
D O I
10.3389/fbioe.2024.1414605
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In recent years, deep convolutional neural network-based segmentation methods have achieved state-of-the-art performance for many medical analysis tasks. However, most of these approaches rely on optimizing the U-Net structure or adding new functional modules, which overlooks the complementation and fusion of coarse-grained and fine-grained semantic information. To address these issues, we propose a 2D medical image segmentation framework called Progressive Learning Network (PL-Net), which comprises Internal Progressive Learning (IPL) and External Progressive Learning (EPL). PL-Net offers the following advantages: 1) IPL divides feature extraction into two steps, allowing for the mixing of different size receptive fields and capturing semantic information from coarse to fine granularity without introducing additional parameters; 2) EPL divides the training process into two stages to optimize parameters and facilitate the fusion of coarse-grained information in the first stage and fine-grained information in the second stage. We conducted comprehensive evaluations of our proposed method on five medical image segmentation datasets, and the experimental results demonstrate that PL-Net achieves competitive segmentation performance. It is worth noting that PL-Net does not introduce any additional learnable parameters compared to other U-Net variants.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] ADR-Net: Context extraction network based on M-Net for medical image segmentation
    Ji, Lingyu
    Jiang, Xiaoyan
    Gao, Yongbin
    Fang, Zhijun
    Cai, Qingping
    Wei, Ziran
    MEDICAL PHYSICS, 2020, 47 (09) : 4254 - 4264
  • [22] DGFAU-Net: Global feature attention upsampling network for medical image segmentation
    Dunlu Peng
    Xi Yu
    Wenjia Peng
    Jianping Lu
    Neural Computing and Applications, 2021, 33 : 12023 - 12037
  • [23] DGFAU-Net: Global feature attention upsampling network for medical image segmentation
    Peng, Dunlu
    Yu, Xi
    Peng, Wenjia
    Lu, Jianping
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (18) : 12023 - 12037
  • [24] LMU-Net: lightweight U-shaped network for medical image segmentation
    Ting Ma
    Ke Wang
    Feng Hu
    Medical & Biological Engineering & Computing, 2024, 62 : 61 - 70
  • [25] DRU-NET: AN EFFICIENT DEEP CONVOLUTIONAL NEURAL NETWORK FOR MEDICAL IMAGE SEGMENTATION
    Jafari, Mina
    Auer, Dorothee
    Francis, Susan
    Garibaldi, Jonathan
    Chen, Xin
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 1144 - 1148
  • [26] MF2-Net: A multipath feature fusion network for medical image segmentation
    Yamanakkanavar, Nagaraj
    Lee, Bumshik
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [27] Learning a Single Network for Robust Medical Image Segmentation With Noisy Labels
    Ye, Shuquan
    Xu, Yan
    Chen, Dongdong
    Han, Songfang
    Liao, Jing
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (09) : 3188 - 3199
  • [28] AdaResU-Net: Multiobjective adaptive convolutional neural network for medical image segmentation
    Baldeon-Calisto, Maria
    Lai-Yuen, Susana K.
    NEUROCOMPUTING, 2020, 392 : 325 - 340
  • [29] TBConvL-Net: A hybrid deep learning architecture for robust medical image segmentation
    Iqbal, Shahzaib
    Khan, Tariq M.
    Naqvi, Syed S.
    Naveed, Asim
    Meijering, Erik
    PATTERN RECOGNITION, 2025, 158
  • [30] Wavelet U-Net for Medical Image Segmentation
    Ying Li
    Yu Wang
    Tuo Leng
    Wen Zhijie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2020, PT I, 2020, 12396 : 800 - 810