Probing Defects in Covalent Organic Frameworks

被引:5
|
作者
Daliran, Saba [1 ]
Oveisi, Ali Reza [2 ]
Dhakshinamoorthy, Amarajothi [3 ,4 ]
Garcia, Hermenegildo [5 ]
机构
[1] Lorestan Univ, Fac Chem, Dept Organ Chem, Khorramabad 6813717133, Iran
[2] Univ Zabol, Dept Chem, Zabol 98615538, Iran
[3] Univ Politecn Valencia, Dept Quim, Valencia 46022, Spain
[4] Madurai Kamaraj Univ, Sch Chem, Madurai 625021, Tamil Nadu, India
[5] Univ Politecn Valencia, Inst Univ Tecnol Quim CSIC UPV, Av Naranjos 46022, Valencia, Spain
基金
美国国家科学基金会;
关键词
Covalent Organic Frameworks; Defect engineering; Defect characterization; Disorders; Imperfections; Missing-linker structures; Modulated synthesis; Truncation strategy; TRIAZINE-BASED FRAMEWORKS; CHEMICAL-STABILITY; BRONSTED ACIDITY; CRYSTALLINE; FUNCTIONALIZATION; CONSTRUCTION; SITES; POLYMERIZATION; DIFFRACTION; EFFICIENT;
D O I
10.1021/acsami.4c12069
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Defects in covalent organic frameworks (COFs) play a pivotal role in determining their properties and performance, significantly influencing interactions with adsorbates, guest molecules, and substrates as well as affecting charge carrier dynamics and light absorption characteristics. The present review focuses on the diverse array of techniques employed for characterizing and quantifying defects in COFs, addressing a critical need in the field of materials science. As will be discussed in this review, there are basically two types of defects referring either to missing organic moieties leaving free binding groups in the material or structural imperfections resulting in lower crystallinity, grain boundary defects, and incomplete stacking. The review summarizes an in-depth analysis of state-of-the-art characterization techniques, elucidating their specific strengths and limitations for each defect type. Key techniques examined in this review include powder X-ray diffraction (PXRD), infrared spectroscopy (IR), thermogravimetric analysis (TGA), nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), scanning transmission electron microscopy (STEM), scanning tunneling microscope (STM), high resolution transmission electron microcoe (HRTEM), gas adsorption, acid-base titration, advanced electron microscopy methods, and computational calculations. We critically assess the capability of each technique to provide qualitative and quantitative information about COF defects, offering insights into their complementary nature and potential for synergistic use. The last section summarizes the main concepts of the review and provides perspectives for future development to overcome the existing challenges.
引用
收藏
页码:50096 / 50114
页数:19
相关论文
共 50 条
  • [1] Defects and Disorder in Covalent Organic Frameworks for Advanced Applications
    Daliran, Saba
    Blanco, Matias
    Dhakshinamoorthy, Amarajothi
    Oveisi, Ali Reza
    Aleman, Jose
    Garcia, Hermenegildo
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (18)
  • [2] Polycrystalline covalent organic frameworks
    Qian, Cheng
    Teo, Wei Liang
    Gao, Qiang
    Wu, Hongwei
    Liao, Yaozu
    Zhao, Yanli
    MATERIALS TODAY, 2023, 71 : 91 - 107
  • [3] Advances in Covalent Organic Frameworks
    Li Lu-Lu
    Liu Shuai
    Zhang Qin
    Hu Nan-Tao
    Wei Liang-Ming
    Yang Zhi
    Wei Hao
    ACTA PHYSICO-CHIMICA SINICA, 2017, 33 (10) : 1960 - 1977
  • [4] Opportunities of Covalent Organic Frameworks for Advanced Applications
    Song, Yanpei
    Sun, Qi
    Aguila, Briana
    Ma, Shengqian
    ADVANCED SCIENCE, 2019, 6 (02)
  • [5] Stable Covalent Organic Frameworks for Photochemical Applications
    Guo, Liping
    Jin, Shangbin
    CHEMPHOTOCHEM, 2019, 3 (10) : 973 - 983
  • [6] Covalent organic frameworks
    Tan, Ke Tian
    Ghosh, Samrat
    Wang, Zhiyong
    Wen, Fuxiang
    Rodriguez-San-Miguel, David
    Feng, Jie
    Huang, Ning
    Wang, Wei
    Zamora, Felix
    Feng, Xinliang
    Thomas, Arne
    Jiang, Donglin
    NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01):
  • [7] Covalent organic frameworks
    Feng, Xiao
    Ding, Xuesong
    Jiang, Donglin
    CHEMICAL SOCIETY REVIEWS, 2012, 41 (18) : 6010 - 6022
  • [8] Crystallinity and stability of covalent organic frameworks
    Huang, Xin
    Sun, Chao
    Feng, Xiao
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (10) : 1367 - 1390
  • [9] Postsynthetic functionalization of covalent organic frameworks
    Yusran, Yusran
    Guan, Xinyu
    Li, Hui
    Fang, Qianrong
    Qiu, Shilun
    NATIONAL SCIENCE REVIEW, 2020, 7 (01) : 170 - 190
  • [10] Photocatalytic Application of Covalent Organic Frameworks
    Li, Li
    Li, Pengfei
    Wang, Bo
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (09): : 1917 - 1932