Potential of E-Learning Interventions and Artificial Intelligence-Assisted Contouring Skills in Radiotherapy: The ELAISA Study

被引:0
|
作者
Rasmussen, Mathis Ersted [1 ]
Akbarov, Kamal [2 ]
Titovich, Egor [2 ]
Nijkamp, Jasper Albertus [3 ]
Van Elmpt, Wouter [4 ]
Primdahl, Hanne [5 ]
Lassen, Pernille [5 ]
Cacicedo, Jon [6 ]
Cordero-Mendez, Lisbeth [2 ]
Uddin, A. F. M. Kamal [7 ]
Mohamed, Ahmed [8 ]
Prajogi, Ben [9 ]
Brohet, Kartika Erida [10 ]
Nyongesa, Catherine [11 ]
Lomidze, Darejan [12 ,13 ]
Prasiko, Gisupnikha [14 ]
Ferraris, Gustavo [15 ]
Mahmood, Humera [16 ]
Stojkovski, Igor [17 ]
Isayev, Isa [18 ]
Mohamad, Issa [19 ]
Shirley, Leivon [20 ]
Kochbati, Lotfi [21 ]
Eftodiev, Ludmila [22 ]
Piatkevich, Maksim [23 ]
Jara, Maria Matilde Bonilla [24 ]
Spahiu, Orges [25 ]
Aralbayev, Rakhat [26 ]
Zakirova, Raushan [27 ]
Subramaniam, Sandya [28 ]
Kibudde, Solomon [29 ]
Tsegmed, Uranchimeg [30 ]
Korreman, Stine Sofia [3 ]
Eriksen, Jesper Grau [1 ]
机构
[1] Aarhus Univ Hosp, Expt Clin Oncol, Aarhus, Denmark
[2] IAEA, Vienna, Austria
[3] Aarhus Univ, Dept Clin Med, Aarhus, Denmark
[4] Maastricht Univ, MAASTRO Clin, Med Ctr, Maastricht, Netherlands
[5] Aarhus Univ Hosp, Dept Oncol, Aarhus, Denmark
[6] Cruces Univ Hosp, Dept Radiat Oncol, Bilbao, Spain
[7] Labaid Canc Hosp & Super Special Ctr, Dhaka, Bangladesh
[8] Univ Gezira, Natl Canc Inst, Wad Madani, Sudan
[9] Cipto Mangunkusumo Hosp, Jakarta, Indonesia
[10] Dharmais Canc Hosp, Jakarta, Indonesia
[11] Kenyatta Natl Hosp, Nairobi, Kenya
[12] Tbilisi State Med Univ, Tbilisi, Georgia
[13] Ingorokva High Med Technol Univ Clin, Tbilisi, Georgia
[14] Nepal Canc Hosp & Res Ctr, Lalitpur, Nepal
[15] Ctr Radioterapiya dean Funes, Cordoba, Argentina
[16] Atom Energy Canc Hosp NORI, Islamabad, Pakistan
[17] Univ Clin Radiotherapy & Oncol, Skopje, North Macedonia
[18] Natl Ctr Oncol, Baku, Azerbaijan
[19] King Hussein Canc Ctr, Amman, Jordan
[20] Christian Inst Hlth Sci & Res, Dimapur, India
[21] Hosp Abderrahmen Mami, Ariana, Tunisia
[22] Moldavian Oncol Inst, Kishinev, Moldova
[23] NN Alexandrov Natl Canc Ctr Belarus, Minsk, BELARUS
[24] Hosp Mexico, San Jose, Costa Rica
[25] Mother Tereza Hosp, Tirana, Albania
[26] Natl Ctr Oncol & Hematol, Bishkek, Kyrgyzstan
[27] Ctr Nucl Med & Oncol, Semey, Kazakhstan
[28] Hosp Kuala Lumpur, Kuala Lumpur, Malaysia
[29] Uganda Canc Inst, Kampala, Uganda
[30] Natl Canc Ctr Mongolia, Ulaanbaatar, Mongolia
关键词
VOLUME DELINEATION; SEGMENTATION; ORGANS; RISK; CONSISTENCY; EFFICIENCY; SYSTEM; REDUCE; BRAIN; COST;
D O I
10.1200/GO.24.00173
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
PURPOSEMost research on artificial intelligence-based auto-contouring as template (AI-assisted contouring) for organs-at-risk (OARs) stem from high-income countries. The effect and safety are, however, likely to depend on local factors. This study aimed to investigate the effects of AI-assisted contouring and teaching on contouring time and contour quality among radiation oncologists (ROs) working in low- and middle-income countries (LMICs).MATERIALS AND METHODSNinety-seven ROs were randomly assigned to either manual or AI-assisted contouring of eight OARs for two head-and-neck cancer cases with an in-between teaching session on contouring guidelines. Thereby, the effect of teaching (yes/no) and AI-assisted contouring (yes/no) was quantified. Second, ROs completed short-term and long-term follow-up cases all using AI assistance. Contour quality was quantified with Dice Similarity Coefficient (DSC) between ROs' contours and expert consensus contours. Groups were compared using absolute differences in medians with 95% CIs.RESULTSAI-assisted contouring without previous teaching increased absolute DSC for optic nerve (by 0.05 [0.01; 0.10]), oral cavity (0.10 [0.06; 0.13]), parotid (0.07 [0.05; 0.12]), spinal cord (0.04 [0.01; 0.06]), and mandible (0.02 [0.01; 0.03]). Contouring time decreased for brain stem (-1.41 [-2.44; -0.25]), mandible (-6.60 [-8.09; -3.35]), optic nerve (-0.19 [-0.47; -0.02]), parotid (-1.80 [-2.66; -0.32]), and thyroid (-1.03 [-2.18; -0.05]). Without AI-assisted contouring, teaching increased DSC for oral cavity (0.05 [0.01; 0.09]) and thyroid (0.04 [0.02; 0.07]), and contouring time increased for mandible (2.36 [-0.51; 5.14]), oral cavity (1.42 [-0.08; 4.14]), and thyroid (1.60 [-0.04; 2.22]).CONCLUSIONThe study suggested that AI-assisted contouring is safe and beneficial to ROs working in LMICs. Prospective clinical trials on AI-assisted contouring should, however, be conducted upon clinical implementation to confirm the effects. AI improves contouring quality and saves time for oncologists in low- and middle-income countries.
引用
收藏
页数:11
相关论文
共 17 条
  • [1] Artificial Intelligence-Assisted Surgery: Potential and Challenges
    Bodenstedt, Sebastian
    Wagner, Martin
    Mueller-Stich, Beat Peter
    Weitz, Juergen
    Speidel, Stefanie
    VISCERAL MEDICINE, 2020, 36 (06) : 450 - 455
  • [2] A Proof-of-Concept Study of Artificial Intelligence-assisted Contour Editing
    Bai, Ti
    Balagopal, Anjali
    Dohopolski, Michael
    Morgan, Howard E.
    McBeth, Rafe
    Tan, Jun
    Lin, Mu-Han
    Sher, David J.
    Nguyen, Dan
    Jiang, Steve
    RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2022, 4 (05)
  • [3] Adaptive Learning Using Artificial Intelligence in e-Learning: A Literature Review
    Gligorea, Ilie
    Cioca, Marius
    Oancea, Romana
    Gorski, Andra-Teodora
    Gorski, Hortensia
    Tudorache, Paul
    EDUCATION SCIENCES, 2023, 13 (12):
  • [4] Research Landscape of Artificial Intelligence and e-Learning: A Bibliometric Research
    Jia, Kan
    Wang, Penghui
    Li, Yang
    Chen, Zezhou
    Jiang, Xinyue
    Lin, Chien-Liang
    Chin, Tachia
    FRONTIERS IN PSYCHOLOGY, 2022, 13
  • [5] Applying Artificial Intelligence in the E-Learning Field: Review Article
    Mahafdah, Rund Fareed
    Bouallegue, Seifeddine
    Bouallegue, Ridha
    ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 5, AINA 2024, 2024, 203 : 392 - 403
  • [6] Artificial intelligence-assisted delineation for postoperative radiotherapy in patients with lung cancer: a prospective, multi-center, cohort study
    Han, Ziming
    Wang, Yu
    Wang, Wenqing
    Zhang, Tao
    Wang, Jianyang
    Ma, Xiangyu
    Men, Kuo
    Shi, Anhui
    Gao, Yuyan
    Bi, Nan
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [7] Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: a Prospective, Randomized Cohort Study
    Luo, Yuchen
    Zhang, Yi
    Liu, Ming
    Lai, Yihong
    Liu, Panpan
    Wang, Zhen
    Xing, Tongyin
    Huang, Ying
    Li, Yue
    Li, Aiming
    Wang, Yadong
    Luo, Xiaobei
    Liu, Side
    Han, Zelong
    JOURNAL OF GASTROINTESTINAL SURGERY, 2021, 25 (08) : 2011 - 2018
  • [8] Artificial intelligence based cognitive state prediction in an e-learning environment using multimodal data
    Gupta, Swadha
    Kumar, Parteek
    Tekchandani, Rajkumar
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 64467 - 64498
  • [9] Diagnostic Utility of Artificial Intelligence-assisted Transperineal Biopsy Planning in Prostate Cancer Suspected Men: A Prospective Cohort Study
    Guenzel, Karsten
    Baumgaertner, Georg Lukas
    Padhani, Anwar R.
    Luckau, Johannes
    Lock, Uwe Carsten
    Ozimek, Tomasz
    Heinrich, Stefan
    Schlegel, Jakob
    Busch, Jonas
    Magheli, Ahmed
    Struck, Julian
    Borgmann, Hendrik
    Penzkofer, Tobias
    Hamm, Bernd
    Hinz, Stefan
    Hamm, Charlie Alexander
    EUROPEAN UROLOGY FOCUS, 2024, 10 (05): : 833 - 842
  • [10] Impact of the clinical use of artificial intelligence-assisted neoplasia detection for colonoscopy: a large-scale prospective propensity score-matched study (with video)
    Ishiyama, Misaki
    Kudo, Shin-ei
    Misawa, Masashi
    Mori, Yuichi
    Maeda, Yasuhara
    Ichimasa, Katsuro
    Kudo, Toyoki
    Hayashi, Takemasa
    Wakamura, Kunihiko
    Miyachi, Hideyuki
    Ishida, Fumio
    Itoh, Hayato
    Oda, Masahiro
    Mori, Kensaku
    GASTROINTESTINAL ENDOSCOPY, 2022, 95 (01) : 155 - 163