Exact solutions of a variable coefficient KdV equation: Power law in time-coefficients

被引:1
作者
Molati, Motlatsi [1 ]
机构
[1] Natl Univ Lesotho, Dept Math & Comp Sci, PO Roma 180, Maseru, Lesotho
来源
EXAMPLES AND COUNTEREXAMPLES | 2023年 / 4卷
关键词
Exact solutions; Symmetry reductions; Time-dependent coefficients; KdV equation; Lie symmetry analysis;
D O I
10.1016/j.exco.2023.100126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Lie symmetry analysis of a power law in-time coefficients Korteweg-de Vries (KdV) equation is performed with the aim of specifying the model parameters (powers of t). That is, the symmetries of the resulting subclasses of the underlying equation are obtained. Further, symmetry reductions and some exact solutions are obtained.
引用
收藏
页数:4
相关论文
共 50 条
[21]   Darboux Transformation and Exact Solutions of the Variable Coefficient Nonlocal Newell-Whitehead Equation [J].
Hu, Yuru ;
Zhang, Feng ;
Xin, Xiangpeng ;
Liu, Hanze .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (04) :1811-1822
[22]   Exact and approximate solutions for the fractional Schrödinger equation with variable coefficients [J].
Baojian Hong ;
Dianchen Lu ;
Wei Chen .
Advances in Difference Equations, 2019
[23]   A method for constructing exact solutions of nonlinear evolution equation with variable coefficients [J].
Taogetusang ;
Sirendaoerji .
ACTA PHYSICA SINICA, 2009, 58 (04) :2121-2126
[24]   Some new exact solutions for a generalized variable coeffi- cients KdV equation [J].
Rajagopalan, R. ;
Kader, Abass H. Abdel ;
Latif, Mohamed S. Abdel ;
Baleanu, Dumitru ;
El Sonbaty, Amr .
JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 29 (01) :1-11
[25]   The extended auxiliary equation method for the KdV equation with variable coefficients [J].
Shi Lan-Fang ;
Chen Cai-Sheng ;
Zhou Xian-Chun .
CHINESE PHYSICS B, 2011, 20 (10)
[26]   The extended auxiliary equation method for the KdV equation with variable coefficients [J].
石兰芳 ;
陈才生 ;
周先春 .
Chinese Physics B, 2011, (10) :166-170
[27]   Exact solutions of forced Burgers equations with time variable coefficients [J].
Buyukasik, Sirin A. ;
Pashaev, Oktay K. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (07) :1635-1651
[28]   Exact solutions to the resonant nonlinear Schrödinger equation with time-dependent coefficients under dual-power law nonlinearity [J].
Wang, Zilin ;
Gao, Ben .
PHYSICA SCRIPTA, 2025, 100 (03)
[29]   Darboux Transformation and Exact Solutions of the Variable Coefficient Nonlocal Newell–Whitehead Equation [J].
Yuru Hu ;
Feng Zhang ;
Xiangpeng Xin ;
Hanze Liu .
Bulletin of the Malaysian Mathematical Sciences Society, 2022, 45 :1811-1822
[30]   NUMERICAL SOLUTIONS OF SPACE FRACTIONAL VARIABLE-COEFFICIENT KdV-MODIFIED KdV EQUATION BY FOURIER SPECTRAL METHOD [J].
Han, Che ;
Wang, Yu-Lan ;
Li, Zhi-Yuan .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2021, 29 (08)