Characterizing Secretion System Effector Proteins With Structure-Aware Graph Neural Networks and Pre-Trained Language Models
被引:1
|
作者:
Ran, Zixu
论文数: 0引用数: 0
h-index: 0
机构:
Northwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R ChinaNorthwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R China
Ran, Zixu
[1
]
Wang, Cong
论文数: 0引用数: 0
h-index: 0
机构:
Northwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R ChinaNorthwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R China
Wang, Cong
[1
]
Sun, Heyun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Adelaide, South Australian immunoGEN Canc Inst SAiGENCI, Adelaide, SA 5000, AustraliaNorthwest A&F Univ, Coll Informat Engn, Xianyang 712100, Peoples R China
Proteins;
Feature extraction;
Three-dimensional displays;
Amino acids;
Solvents;
Bioinformatics;
Benchmark testing;
Deep learning;
host-pathogen interaction;
protein 3D structure;
secreted protein;
III SECRETION;
MIMICRY;
D O I:
10.1109/JBHI.2024.3413146
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
The Type III Secretion Systems (T3SSs) play a pivotal role in host-pathogen interactions by mediating the secretion of type III secretion system effectors (T3SEs) into host cells. These T3SEs mimic host cell protein functions, influencing interactions between Gram-negative bacterial pathogens and their hosts. Identifying T3SEs is essential in biomedical research for comprehending bacterial pathogenesis and its implications on human cells. This study presents EDIFIER, a novel multi-channel model designed for accurate T3SE prediction. It incorporates a graph structural channel, utilizing graph convolutional networks (GCN) to capture protein 3D structural features and a sequence channel based on the ProteinBERT pre-trained model to extract the sequence context features of T3SEs. Rigorous benchmarking tests, including ablation studies and comparative analysis, validate that EDIFIER outperforms current state-of-the-art tools in T3SE prediction. To enhance EDIFIER's accessibility to the broader scientific community, we developed a webserver that is publicly accessible at http://edifier.unimelb-biotools.cloud.edu.au/. We anticipate EDIFIER will contribute to the field by providing reliable T3SE predictions, thereby advancing our understanding of host-pathogen dynamics.
机构:
Univ Sci & Technol China USTC, Hefei 230022, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Zhao, Zhe
Wang, Pengkun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China USTC, Hefei 230022, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Wang, Pengkun
Wang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China USTC, Hefei 230022, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Wang, Xu
Wen, Haibin
论文数: 0引用数: 0
h-index: 0
机构:
Shaoguan Univ, Shaoguan 512158, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Wen, Haibin
Xie, Xiaolong
论文数: 0引用数: 0
h-index: 0
机构:
Nanchang Univ, Nanchang 330047, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Xie, Xiaolong
Zhou, Zhengyang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China USTC, Hefei 230022, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Zhou, Zhengyang
Zhang, Qingfu
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518057, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
Zhang, Qingfu
Wang, Yang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sci & Technol China USTC, Hefei 230022, Peoples R ChinaUniv Sci & Technol China USTC, Hefei 230022, Peoples R China
机构:
Sungkyunkwan Univ, Dept Ind Engn, 2066 Seobu Ro, Suwon, South KoreaSungkyunkwan Univ, Dept Ind Engn, 2066 Seobu Ro, Suwon, South Korea
Han, Jongmin
Kwon, Youngchun
论文数: 0引用数: 0
h-index: 0
机构:
Samsung Elect Co Ltd, Samsung Adv Inst Technol, 130 Samsung Ro, Suwon, South KoreaSungkyunkwan Univ, Dept Ind Engn, 2066 Seobu Ro, Suwon, South Korea
机构:
North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
Beijing Key Lab New Energy & Low Carbon Dev, Beijing, Peoples R ChinaNorth China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
Wang, Qiqing
Li, Cunbin
论文数: 0引用数: 0
h-index: 0
机构:
North China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China
Beijing Key Lab New Energy & Low Carbon Dev, Beijing, Peoples R ChinaNorth China Elect Power Univ, Sch Econ & Management, Beijing 102206, Peoples R China