Gut Microbiota Dysbiosis, Oxidative Stress, Inflammation, and Epigenetic Alterations in Metabolic Diseases

被引:83
作者
Abdolmaleky, Hamid Mostafavi [1 ,2 ]
Zhou, Jin-Rong [1 ]
机构
[1] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Nutr Metab Lab, Boston, MA 02215 USA
[2] Boston Univ, Chobanian & Avedisian Sch Med, Dept Med Biomed Genet, Boston, MA 02118 USA
关键词
gut dysbiosis; microbiota; microbiome; oxidative stress; inflammation; epigenetic; transgenerational; metabolic diseases; HOST; DIET; HOMEOSTASIS; BACTERIAL; CELLS; ACID;
D O I
10.3390/antiox13080985
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Gut dysbiosis, resulting from an imbalance in the gut microbiome, can induce excessive production of reactive oxygen species (ROS), leading to inflammation, DNA damage, activation of the immune system, and epigenetic alterations of critical genes involved in the metabolic pathways. Gut dysbiosis-induced inflammation can also disrupt the gut barrier integrity and increase intestinal permeability, which allows gut-derived toxic products to enter the liver and systemic circulation, further triggering oxidative stress, inflammation, and epigenetic alterations associated with metabolic diseases. However, specific gut-derived metabolites, such as short-chain fatty acids (SCFAs), lactate, and vitamins, can modulate oxidative stress and the immune system through epigenetic mechanisms, thereby improving metabolic function. Gut microbiota and diet-induced metabolic diseases, such as obesity, insulin resistance, dyslipidemia, and hypertension, can transfer to the next generation, involving epigenetic mechanisms. In this review, we will introduce the key epigenetic alterations that, along with gut dysbiosis and ROS, are engaged in developing metabolic diseases. Finally, we will discuss potential therapeutic interventions such as dietary modifications, prebiotics, probiotics, postbiotics, and fecal microbiota transplantation, which may reduce oxidative stress and inflammation associated with metabolic syndrome by altering gut microbiota and epigenetic alterations. In summary, this review highlights the crucial role of gut microbiota dysbiosis, oxidative stress, and inflammation in the pathogenesis of metabolic diseases, with a particular focus on epigenetic alterations (including histone modifications, DNA methylomics, and RNA interference) and potential interventions that may prevent or improve metabolic diseases.
引用
收藏
页数:20
相关论文
共 157 条
[1]   Effects of urolithins on obesity-associated gut dysbiosis in rats fed on a high-fat diet [J].
Abdulrahman, Abdulrasheed O. ;
Alzubaidi, Mohammed Yahya ;
Nadeem, Muhammad Shahid ;
Khan, Jalaluddin Awlia ;
Rather, Irfan A. ;
Khan, Mohammad Imran .
INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2021, 72 (07) :923-934
[2]   Fermented brown rice beverage distinctively modulates the gut microbiota in Okinawans with metabolic syndrome: A randomized controlled trial [J].
Akamine, Yukari ;
Millman, Jasmine F. ;
Uema, Tsugumi ;
Okamoto, Shiki ;
Yonamine, Masato ;
Uehara, Moriyuki ;
Kozuka, Chisayo ;
Kaname, Tadashi ;
Shimabukuro, Michio ;
Kinjo, Kozen ;
Mitsuta, Masayo ;
Watanabe, Hirosuke ;
Masuzaki, Hiroaki .
NUTRITION RESEARCH, 2022, 103 :68-81
[3]   Epigenetic Effects of Gut Metabolites: Exploring the Path of Dietary Prevention of Type 1 Diabetes [J].
Al Theyab, Ahmad ;
Almutairi, Turki ;
Al-Suwaidi, Abdulla M. ;
Bendriss, Ghizlane ;
McVeigh, Clare ;
Chaari, Ali .
FRONTIERS IN NUTRITION, 2020, 7
[4]   Diet, Gut Microbiome and Epigenetics: Emerging Links with Inflammatory Bowel Diseases and Prospects for Management and Prevention [J].
Aleksandrova, Krasimira ;
Romero-Mosquera, Beatriz ;
Hernandez, Vicent .
NUTRIENTS, 2017, 9 (09) :1-13
[5]   The Metabolic Syndrome, a Human Disease [J].
Alemany, Maria .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (04)
[6]   Differential Methylation Profile in Fragile X Syndrome-Prone Offspring Mice after in Utero Exposure to Lactobacillus Reuteri [J].
AlOlaby, Reem R. ;
Zafarullah, Marwa ;
Barboza, Mariana ;
Peng, Gang ;
Varian, Bernard J. ;
Erdman, Susan E. ;
Lebrilla, Carlito ;
Tassone, Flora .
GENES, 2022, 13 (08)
[7]   Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism [J].
Amabebe, Emmanuel ;
Robert, Faith O. ;
Agbalalah, Tarimoboere ;
Orubu, Ebiowei S. F. .
BRITISH JOURNAL OF NUTRITION, 2020, 123 (10) :1127-1137
[8]   Can modulation of gut microbiota affect anthropometric indices in patients with non-alcoholic fatty liver disease? An umbrella meta-analysis of randomized controlled trials [J].
Amini-Salehi, Ehsan ;
Nayak, Sandeep Samethadka ;
Maddineni, Gautam ;
Mahapatro, Abinash ;
Keivanlou, Mohammad-Hossein ;
Moghadam, Saman Soltani ;
Vakilpour, Azin ;
Aleali, Maryam Sadat ;
Joukar, Farahnaz ;
Hashemi, Mohammad ;
Norouzi, Naeim ;
Bakhshi, Arash ;
Bahrampourian, Ali ;
Mansour-Ghanaei, Fariborz ;
Hassanipour, Soheil .
ANNALS OF MEDICINE AND SURGERY, 2024, 86 (05) :2900-2910
[9]   The microbiota programs DNA methylation to control intestinal homeostasis and inflammation [J].
Ansari, Ihab ;
Raddatz, Guenter ;
Gutekunst, Julian ;
Ridnik, Meshi ;
Cohen, Daphne ;
Abu-Remaileh, Monther ;
Tuganbaev, Timur ;
Shapiro, Hagit ;
Pikarsky, Eli ;
Elinav, Eran ;
Lyko, Frank ;
Bergman, Yehudit .
NATURE MICROBIOLOGY, 2020, 5 (04) :610-+
[10]   Paternal microbiome perturbations impact offspring fitness [J].
Argaw-Denboba, Ayele ;
Schmidt, Thomas S. B. ;
Di Giacomo, Monica ;
Ranjan, Bobby ;
Devendran, Saravanan ;
Mastrorilli, Eleonora ;
Lloyd, Catrin T. ;
Pugliese, Danilo ;
Paribeni, Violetta ;
Dabin, Juliette ;
Pisaniello, Alessandra ;
Espinola, Sergio ;
Crevenna, Alvaro ;
Ghosh, Subhanita ;
Humphreys, Neil ;
Boruc, Olga ;
Sarkies, Peter ;
Zimmermann, Michael ;
Bork, Peer ;
Hackett, Jamie A. .
NATURE, 2024, 629 (8012) :652-659