First-principles study on the adsorption of gas molecules on Fe, Ti-Doped silicene

被引:2
|
作者
Tang, Xiao [1 ,2 ]
Li, Wei [1 ,2 ,3 ]
Xu, Wei [1 ,2 ]
Ren, Qingying [1 ,2 ]
Chen, Qingyun [1 ,2 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Elect & Opt Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Flexible Elect Future Technol, Nanjing 210023, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Coll Integrated Circuit Sci & Engn, Nanjing 210023, Peoples R China
关键词
Silicene; First-principles; Doping; Gas sensor; NO;
D O I
10.1016/j.mssp.2024.108797
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this study, we employ first-principles calculations to investigate the geometric and electronic properties of intrinsic silicene and silicene doped with metal elements Fe and Ti. We analyze the adsorption performance of five gas molecules (CO, SO2, H2S, CH4 and H2CO) on the surfaces of these two materials. For each gas molecule, we determine the optimal adsorption site and calculate parameters such as adsorption distance, adsorption energy, charge transfer, recovery time, and density of states to understand the adsorption mechanism. Our study reveals that the adsorption affinity of the selected gas molecules on intrinsic silicene is relatively weak. The distance between the gas molecules and the intrinsic silicene surface is relatively large, and no stable chemical bonds are formed between them. In contrast, Fe and Ti-doped silicene exhibit relatively higher stability, with the adsorption energies of the gas molecules on their surfaces increasing obviously. The Titanium doping exerts a considerable influence on increasing the band gap and the adsorption energy of silicene compared with the intrinsic one, thus the whole structure is able to reveal semiconductors' properties. In Ti-doped silicene structures, the band gap opens, exhibiting semiconductor properties, and the adsorption energies increase relative to intrinsic silicene. These results indicate that the doping of Fe and Ti atoms enhances the adsorption performance of silicene materials, providing theoretical reference for the gas sensing performance of Fe and Ti-doped silicene materials and the semiconductor performance of Ti-doped silicene.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] First-Principles Study of the Electronic Properties of B/N Atom Doped Silicene Nanoribbons
    Luan, Hang-Xing
    Zhang, Chang-Wen
    Zheng, Fu-Bao
    Wang, Pei-Ji
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (26): : 13620 - 13626
  • [42] First-principles study of Ti-doped sapphire. I. Formation and optical transition properties of titanium pairs
    Jing, Weiguo
    Liu, Mingzhe
    Wen, Jun
    Ning, Lixin
    Yin, Min
    Duan, Chang-Kui
    PHYSICAL REVIEW B, 2021, 104 (16)
  • [43] First-principles study of oxygen adsorption on Fe(110) surface
    Tan, Xiaochao
    Zhou, Jicheng
    Peng, Yinqiao
    APPLIED SURFACE SCIENCE, 2012, 258 (22) : 8484 - 8491
  • [44] First-principles calculations study of Na adsorbed on silicene
    Guo, Xi-Xi
    Guo, Ping
    Zheng, Ji-Ming
    Cao, Li-Ke
    Zhao, Pu-Ju
    APPLIED SURFACE SCIENCE, 2015, 341 : 69 - 74
  • [45] First-principles study of CO gas adsorption on pristine and Fe-doped H4,4,4-graphyne
    Li, Han-Bing
    Feng, Yu-Tao
    Shao, Zhi-Gang
    Wang, Cang-Long
    Yang, Lei
    APPLIED SURFACE SCIENCE, 2022, 586
  • [46] Strain field of the monovacancy in silicene: First-principles study
    Li, Rui
    Liu, Zhongli
    Ma, Wenqiang
    Tan, Yonggang
    AIP ADVANCES, 2016, 6 (05)
  • [47] First-principles studies of lithium adsorption and diffusion on silicene with grain boundaries
    Wang, Xiao
    Liu, Huazhong
    Huttula, Marko
    Luo, Youhua
    Zhang, Meng
    Cao, Wei
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2019, 119 (13)
  • [48] Adsorption of NO gas molecule on the vacancy defected and transition metal doped antimonene: A first-principles study
    Chen, Guo-Xiang
    Du, Rui-Yun
    Wang, Dou-Dou
    Chen, Zhe
    Liu, Shuai
    Zhang, Jian-Min
    VACUUM, 2023, 207
  • [49] First-Principles Study of Interaction of Bismuthene with Small Gas Molecules
    Khadiullin, Salavat Kh
    Kistanov, Andrey A.
    Ustiuzhanina, Svetlana, V
    Dayletshin, Artur R.
    Zhou, Kun
    Dmitriev, Sergey, V
    Korznikova, Elena A.
    CHEMISTRYSELECT, 2019, 4 (36): : 10928 - 10933
  • [50] First-Principles Study of Gas Molecule Adsorption on C-doped Zigzag Phosphorene Nanoribbons
    Yang, Shuai
    Wang, Zhiyong
    Dai, Xueqiong
    Xiao, Jianrong
    Long, Mengqiu
    Chen, Tong
    COATINGS, 2019, 9 (11)