On the Dai-Liao conjugate gradient method for vector optimization

被引:1
|
作者
Yahaya, J. [1 ,3 ]
Kumam, P. [1 ,2 ]
Bello, A. U. [4 ,5 ]
Sitthithakerngkiet, K. [6 ]
机构
[1] King Mongkuts Univ Technol Thonburi KMUTT, Fac Sci, Ctr Excellence Theoret & Computat Sci TaCS CoE & K, Dept Math,Res Lab, Room SCL 802 Fixed Point Lab Sci Lab Bldg, Bangkok, Thailand
[2] King Mongkuts Univ Technol, NCAO Res Ctr, Ctr Excellence Theoret & Computat Sci TaCSCoE, Fixed Point Theory & Applicat Res Grp,Fac Sci, Bangkok, Thailand
[3] Ahmadu Bello Univ Zaria, Fac Phys Sci, Dept Math, Zaria, Kaduna State, Nigeria
[4] African Univ Sci & Technol, Math Inst, Abuja, Nigeria
[5] Fed Univ Dutsin ma, Dept Math, Dutsin Ma, Katsina State, Nigeria
[6] King Mongkuts Univ Technol North Bangkok KMUTNB, Intelligent & Nonlinear Dynam Innovat Res Ctr, Dept Math, Fac Appl Sci, Bangkok, Thailand
关键词
conjugate gradient method; Dai-Liao conjugate gradient; Pareto-optimality; self-adjusting method; vector optimization; GLOBAL CONVERGENCE; DESCENT; SCALARIZATION; MINIMIZATION; ALGORITHMS;
D O I
10.1080/02331934.2024.2399803
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Several conjugate gradient (CG) parameters have led to promising methods for optimization problems. However, some parameters, such as the Dai-Liao (DL+) and modified Polak-Ribi & egrave;re-Polyak (EPRP) methods, have not yet been explored in the vector optimization setting. This paper addresses this gap by proposing the DL+ and EPRP+ methods to vector optimization. We start by developing a self-adjusting DL+ algorithm to find critical points of vector-valued functions within a closed, convex, pointed cone with a nonempty interior. The algorithm is designed to satisfy the sufficient descent condition (SDC) with a Wolfe line search; if this condition is not satisfied, the algorithm adjusts by redefining the DL+ to meet the SDC. We establish the global convergence of this algorithm under the assumption of SDC without requiring regular restarts or convexity assumption on the objective functions. Similarly, we developed the EPRP+ algorithm using the same approach as the DL+ algorithm. Furthermore, under exact line search, the DL+ and EPRP+ methods reduce to Hestenes-Stiefel (HS) and Polak-Ribi & egrave;re-Polyak (PRP) methods, respectively. We present numerical experiments on some selected test problems sourced from the multiobjective optimization literature that demonstrate the effectiveness and practical implementation of the proposed algorithms, highlighting their promising potential.
引用
收藏
页数:31
相关论文
共 50 条
  • [1] On the Extension of Dai-Liao Conjugate Gradient Method for Vector Optimization
    Hu, Qingjie
    Li, Ruyun
    Zhang, Yanyan
    Zhu, Zhibin
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, 203 (01) : 810 - 843
  • [2] Descent Symmetrization of the Dai-Liao Conjugate Gradient Method
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 2016, 33 (02)
  • [3] MATRIX ANALYSES ON THE DAI-LIAO CONJUGATE GRADIENT METHOD
    Aminifard, Z.
    Babaie-Kafaki, S.
    ANZIAM JOURNAL, 2019, 61 (02): : 195 - 203
  • [4] A descent Dai-Liao conjugate gradient method for nonlinear equations
    Abubakar, Auwal Bala
    Kumam, Poom
    NUMERICAL ALGORITHMS, 2019, 81 (01) : 197 - 210
  • [5] A descent Dai-Liao conjugate gradient method for nonlinear equations
    Auwal Bala Abubakar
    Poom Kumam
    Numerical Algorithms, 2019, 81 : 197 - 210
  • [6] The Dai-Liao nonlinear conjugate gradient method with optimal parameter choices
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2014, 234 (03) : 625 - 630
  • [7] A descent family of Dai-Liao conjugate gradient methods
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    OPTIMIZATION METHODS & SOFTWARE, 2014, 29 (03): : 583 - 591
  • [8] Two optimal Dai-Liao conjugate gradient methods
    Babaie-Kafaki, Saman
    Ghanbari, Reza
    OPTIMIZATION, 2015, 64 (11) : 2277 - 2287
  • [9] A Dai-Liao conjugate gradient algorithm with clustering of eigenvalues
    Neculai Andrei
    Numerical Algorithms, 2018, 77 : 1273 - 1282
  • [10] A New Dai-Liao Conjugate Gradient Method with Optimal Parameter Choice
    Zhang, Keke
    Liu, Hongwei
    Liu, Zexian
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2019, 40 (02) : 194 - 215