Adaptation of Enterprise Modeling Methods for Large Language Models

被引:1
|
作者
Barn, Balbir S. [1 ]
Barat, Souvik [2 ]
Sandkuhl, Kurt [3 ]
机构
[1] Middlesex Univ, London, England
[2] Tata Consultancy Serv Res, Pune, Maharashtra, India
[3] Univ Rostock, Rostock, Germany
来源
PRACTICE OF ENTERPRISE MODELING, POEM 2023 | 2024年 / 497卷
关键词
Enterprise Modeling; Large Language Model; Modeling Method; ChatGPT; Prompt meta-model;
D O I
10.1007/978-3-031-48583-1_1
中图分类号
F [经济];
学科分类号
02 ;
摘要
Large language models (LLM) are considered by many researchers as promising technology for automating routine tasks. Results from applying LLM in engineering disciplines such as Enterprise Modeling also indicate potential for the support of modeling activities. LLMs are fine-tuned for specific tasks using chat based interaction through the use of prompts. This paper aims at a detailed investigation of the potential of LLMs in Enterprise Modeling (EM) by taking the perspective of EM method adaptation of selected parts of the modeling process within the context of using prompts to interrogate the LLM. The research question addressed is: What adaptations in EM methods have to be made to exploit the potential of prompt based interaction with LLMs? The main contributions are (1) a meta-model for prompt engineering that integrates the concepts of the modeling domain under consideration with the notation of the modeling language applied and the input and output of prompts, (2) an investigation into the general potential of LLM in EM methods and its application in the 4EM method, and (3) implications for enterprise modeling methods.
引用
收藏
页码:3 / 18
页数:16
相关论文
共 50 条
  • [31] Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models
    Shyr, Cathy
    Hu, Yan
    Bastarache, Lisa
    Cheng, Alex
    Hamid, Rizwan
    Harris, Paul
    Xu, Hua
    JOURNAL OF HEALTHCARE INFORMATICS RESEARCH, 2024, 8 (02) : 438 - 461
  • [32] Large language models vs human for classifying clinical documents
    Mustafa, Akram
    Naseem, Usman
    Azghadi, Mostafa Rahimi
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2025, 195
  • [33] HALO: An Ontology for Representing and Categorizing Hallucinations in Large Language Models
    Nananukul, Navapat
    Kejriwal, Mayank
    DISRUPTIVE TECHNOLOGIES IN INFORMATION SCIENCES VIII, 2024, 13058
  • [34] Examining the Role of Large Language Models in Orthopedics:Systematic Review
    Zhang, Cheng
    Liu, Shanshan
    Zhou, Xingyu
    Zhou, Siyu
    Tian, Yinglun
    Wang, Shenglin
    Xu, Nanfang
    Li, Weishi
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2024, 26
  • [35] Utilizing Large Language Models in Ophthalmology: The Current Landscape and Challenges
    Chotcomwongse, Peranut
    Ruamviboonsuk, Paisan
    Grzybowski, Andrzej
    OPHTHALMOLOGY AND THERAPY, 2024, 13 (10) : 2543 - 2558
  • [36] Opportunities and challenges for ChatGPT and large language models in biomedicine and health
    Tian, Shubo
    Jin, Qiao
    Yeganova, Lana
    Lai, Po-Ting
    Zhu, Qingqing
    Chen, Xiuying
    Yang, Yifan
    Chen, Qingyu
    Kim, Won
    Comeau, Donald C.
    Islamaj, Rezarta
    Kapoor, Aadit
    Gao, Xin
    Lu, Zhiyong
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [37] Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models
    Cathy Shyr
    Yan Hu
    Lisa Bastarache
    Alex Cheng
    Rizwan Hamid
    Paul Harris
    Hua Xu
    Journal of Healthcare Informatics Research, 2024, 8 : 438 - 461
  • [38] Probing into the Fairness of Large Language Models: A Case Study of ChatGPT
    Li, Yunqi
    Zhang, Lanjing
    Zhang, Yongfeng
    2024 58TH ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS, CISS, 2024,
  • [39] Leveraging foundation and large language models in medical artificial intelligence
    Wong Io Nam
    Monteiro Olivia
    BaptistaHon Daniel T
    Wang Kai
    Lu Wenyang
    Sun Zhuo
    Nie Sheng
    Yin Yun
    中华医学杂志英文版, 2024, 137 (21)
  • [40] Large language models in health care: Development, applications, and challenges
    Yang, Rui
    Tan, Ting Fang
    Lu, Wei
    Thirunavukarasu, Arun James
    Ting, Daniel Shu Wei
    Liu, Nan
    HEALTH CARE SCIENCE, 2023, 2 (04): : 255 - 263