EXISTENCE AND LARGE TIME BEHAVIOR FOR A DISSIPATIVE VARIANT OF THE ROTATIONAL NLS EQUATION

被引:0
作者
Antonelli, Paolo [1 ]
Shakarov, Boris [2 ]
机构
[1] Gran Sasso Sci Inst, Viale Francesco Crispi 7, I-67100 Laquila, Italy
[2] UPS IMT, Inst Math Toulouse, F-31062 Toulouse 9, France
关键词
Gross-Pitaevskii equation; Bose-Einstein condensation; Ginzburg-Landau equation; stationary states; global attractor; BOSE-EINSTEIN CONDENSATION; GROSS-PITAEVSKII EQUATION; NONLINEAR SCHRODINGER-EQUATION; GROUND-STATE; NOBEL LECTURE; STABILITY; DILUTE; WAVES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a dissipative variant of the Gross-Pitaevskii equation with rotation. The model contains a nonlocal, nonlinear term that forces the conservation of L-2-norm of solutions. We are motivated by several physical experiments and numerical simulations studying the formation of vortices in Bose-Einstein condensates. We show local and global well-posedness of this model and investigate the asymptotic behavior of its solutions. In the linear case, the solution asymptotically tends to the eigenspace associated with the smallest eigenvalue in the decomposition of the initial datum. In the nonlinear case, we obtain weak convergence to a stationary state. Moreover, for initial energies in a specific range, we prove strong asymptotic stability of ground state solutions.
引用
收藏
页码:1601 / 1633
页数:33
相关论文
共 41 条
  • [1] Observation of vortex lattices in Bose-Einstein condensates
    Abo-Shaeer, JR
    Raman, C
    Vogels, JM
    Ketterle, W
    [J]. SCIENCE, 2001, 292 (5516) : 476 - 479
  • [2] Antonelli P, 2024, CALC VAR PARTIAL DIF, V63, DOI 10.1007/s00526-024-02724-6
  • [3] Global, finite energy, weak solutions for the NLS with rough, time-dependent magnetic potentials
    Antonelli, Paolo
    Michelangeli, Alessandro
    Scandone, Raffaele
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (02):
  • [4] ON THE CAUCHY PROBLEM FOR NONLINEAR SCHRODINGER EQUATIONS WITH ROTATION
    Antonelli, Paolo
    Marahrens, Daniel
    Sparber, Christof
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 703 - 715
  • [5] Stability and instability properties of rotating Bose-Einstein condensates
    Arbunich, Jack
    Nenciu, Irina
    Sparber, Christof
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2019, 109 (06) : 1415 - 1432
  • [6] Fundamental gaps of the Gross-Pitaevskii equation with repulsive interaction
    Bao, Weizhu
    Ruan, Xinran
    [J]. ASYMPTOTIC ANALYSIS, 2018, 110 (1-2) : 53 - 82
  • [7] MATHEMATICAL THEORY AND NUMERICAL METHODS FOR BOSE-EINSTEIN CONDENSATION
    Bao, Weizhu
    Cai, Yongyong
    [J]. KINETIC AND RELATED MODELS, 2013, 6 (01) : 1 - 135
  • [8] Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow
    Bao, WZ
    Du, Q
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 25 (05) : 1674 - 1697
  • [9] Numerical solution of the Gross-Pitaevskii equation for Bose-Einstein condensation
    Bao, WZ
    Jaksch, D
    Markowich, PA
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 187 (01) : 318 - 342
  • [10] Barenghi C.F., 2001, Springer Science & Business Media, V571