Sentiment Analysis: Effect of Combining BERT as an Embedding Technique with CNN Model for Tunisian Dialect

被引:0
|
作者
Mechti, Seifeddine [1 ]
Faiz, Rim [2 ]
Khoufi, Nabil [3 ]
Antit, Shaima [4 ]
Krichen, Moez [3 ]
机构
[1] Univ Sfax, LARODEC Lab, ISG Tunis, ISSEPS, Sfax, Tunisia
[2] Univ Carthage, LARODEC Lab, IHEC, Carthage, Tunisia
[3] Univ Sfax, MIRACL Lab, FSEGS, Sfax, Tunisia
[4] Univ Sfax, REDCAD Lab, ENIS, Sfax, Tunisia
来源
ADVANCES IN INFORMATION SYSTEMS, ARTIFICIAL INTELLIGENCE AND KNOWLEDGE MANAGEMENT, ICIKS 2023 | 2024年 / 486卷
关键词
Sentiment Analysis; Embedding technique; Deep Learning; BERT; RoBERTa; Tunisian Dialect;
D O I
10.1007/978-3-031-51664-1_22
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present an enhanced BERT methodology for sentiment classification of a Tunisian corpus. We introduce a Tunisian optimized BERT model, named TunRoBERTa, which surpasses the performance of Multilingual-BERT, CNN, CNN combined with LSTM, and RoBERTa. Additionally, we incorporate TunRoBERTa as an embedding technique with Convolutional Neural Networks (CNN). The experimental results demonstrate that the combination of TunRoBERTa and CNN yields the highest performance compared to the previous models. Our findings outperform Multilingual-BERT, CNN, and CNN combined with LSTM.
引用
收藏
页码:309 / 320
页数:12
相关论文
共 50 条
  • [21] Sentiment Analysis on Moroccan Dialect of Arabic Combining NLP and ML Methods
    Ladrham, Khalil
    Gueddah, Hicham
    ARABIC LANGUAGE PROCESSING: FROM THEORY TO PRACTICE, ICALP 2023, PT I, 2025, 2339 : 3 - 16
  • [22] Target-Based Sentiment Analysis using a BERT Embedded Model
    Pingili, Shashipal Reddy
    Li, Longzhuang
    2020 IEEE 32ND INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI), 2020, : 1124 - 1128
  • [23] Proposing sentiment analysis model based on BERT and XLNet for movie reviews
    Danyal, Mian Muhammad
    Khan, Sarwar Shah
    Khan, Muzammil
    Ullah, Subhan
    Mehmood, Faheem
    Ali, Ijaz
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (24) : 64315 - 64339
  • [24] Application of the BERT Language Model for Sentiment Analysis of Social Network Posts
    Moshkin, Vadim
    Konstantinov, Andrey
    Yarushkina, Nadezhda
    ARTIFICIAL INTELLIGENCE, 2020, 12412 : 274 - 283
  • [25] Text Sentiment Analysis of Douban Film Short Comments Based on BERT-CNN-BiLSTM-Att Model
    He, Aixiang
    Abisado, Mideth
    IEEE ACCESS, 2024, 12 : 45229 - 45237
  • [26] Pedagogical sentiment analysis based on the BERT-CNN-BiGRU-attention model in the context of intercultural communication barriers
    Bi, Xin
    Zhang, Tian
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [27] OPTIMISED BERT MODEL FOR SENTIMENT ANALYSIS IN PANDEMIC ENVIRONMENT
    Deepa, D.
    Tamilarasi, A.
    JOURNAL OF ENVIRONMENTAL PROTECTION AND ECOLOGY, 2021, 22 (06): : 2603 - 2613
  • [28] Comparison Analysis of LSTM and CNN Variants with Embedding Word Methods for Sentiment Analysis on Food Consumption Behavior
    Ramzi, Nurul Izleen
    Yusoff, Marina
    Noh, Norzaidah Md
    SOFT COMPUTING IN DATA SCIENCE, SCDS 2023, 2023, 1771 : 193 - 207
  • [29] T-Bert: A Spam Review Detection Model Combining Group Intelligence and Personalized Sentiment Information
    Shang, Yue
    Liu, Meiling
    Zhao, Tiejun
    Zhou, Jiyun
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING, ICANN 2021, PT V, 2021, 12895 : 409 - 421
  • [30] Aspect-Level Sentiment Analysis Using CNN Over BERT-GCN
    Phan, Huyen Trang
    Ngoc Thanh Nguyen
    Hwang, Dosam
    IEEE ACCESS, 2022, 10 : 110402 - 110409