Who Puts the 'Active' into 'Active Learning'?

被引:1
|
作者
Mason, John [1 ,2 ]
机构
[1] Open Univ, Milton Keynes, England
[2] Univ Oxford, Oxford, England
关键词
Modes of interaction; Pedagogy; Active learning; Receptive learning; Pedagogic actions; SELF-EXPLANATIONS;
D O I
10.1007/s42330-024-00318-0
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Learning is here considered to have taken place when someone has developed the habit, propensity, and disposition to attend productively to things not previously noticed, and in ways not previously experienced, to do with some specific and particular content. 'Active learning' sounds like a tautology, but was introduced as a contrast to the more passive activity of students sitting in lectures listening and transcribing mathematics written on a board or screen onto their own paper. The stance taken here is that effective and efficient learning involves active engagement in activity, but includes enculturation through being in the presence of a relative expert1 who themselves is manifesting mathematical thinking, not simply passing on the records of the results of previous mathematical thought. Such 'passivity' does not necessarily require intention. Following Bennett2 actions are here taken to involve three agents or impulses: initiating, responding, and reconciling or mediating. All three agents are thus active, but in different ways. Interactions intended to contribute to learning are considered to be actions, and so involve three agents: learner, teacher (in some manifestation), and mathematical content, all within a culture or ethos. Since there are six different ways in which the triple of agents can be assigned to the triple of impulses, six different modes are possible. Analysing these modes sheds light on different ways in which learning could be said to be 'active'. Activity takes place within a mode of interaction. Again following Bennett, effective activity is here taken to require appropriate relationships among the gap between current state and intended goal, the resources available, and the tasks set.1Vygotsky (1978) pointed out that 'higher psychological processes' are first encountered in others.2Bennett (1993); see also Shantock Systematics Group (1975) On consid & egrave;re qu'il y a apprentissage lorsque quelqu'un prend l'habitude, qu'il a la propension ainsi que la disposition & agrave; s'occuper de fa & ccedil;on productive de choses qu'il n'avait pas remarqu & eacute;es auparavant, et d'une mani & egrave;re qu'il n'avait jamais exp & eacute;riment & eacute;e, et qui ont un rapport avec un contenu sp & eacute;cifique et particulier. L'expression << apprentissage actif >> semble & ecirc;tre une tautologie, mais elle a & eacute;t & eacute; instaur & eacute;e pour distinguer ce processus de l'activit & eacute; plus passive d'& eacute;l & egrave;ves assis dans des cours magistraux, & eacute;coutant et transcrivant sur leurs propres feuilles de papier des math & eacute;matiques & eacute;crites au tableau ou & agrave; l'& eacute;cran. Notre estimons qu'un apprentissage efficace et performant implique un engagement actif dans l'activit & eacute;, mais il inclut l'enculturation par la pr & eacute;sence d'un expert relatif1 qui manifeste lui-m & ecirc;me la pens & eacute;e math & eacute;matique, et ne se contente pas de rapporter des r & eacute;sultats d'une pens & eacute;e math & eacute;matique ant & eacute;rieure. Une telle << passivit & eacute;>> ne requiert pas n & eacute;cessairement une intention. & Agrave; l'instar de Bennett2, les actions sont ici consid & eacute;r & eacute;es comme impliquant trois agents ou impulsions: l'initiation, la r & eacute;ponse et la r & eacute;conciliation ou la m & eacute;diation. Les trois agents sont donc actifs, mais de mani & egrave;re diff & eacute;rente. Les interactions destin & eacute;es & agrave; contribuer & agrave; l'apprentissage sont consid & eacute;r & eacute;es comme des actions et elles supposent donc la pr & eacute;sence de trois agents: l'& eacute;l & egrave;ve, l'enseignant (sous une forme ou une autre) et le contenu math & eacute;matique, le tout dans le cadre d'une culture ou d'une & eacute;thique. Comme il existe six fa & ccedil;ons diff & eacute;rentes d'affecter les trois agents & agrave; chacune des impulsions, six modes distincts sont possibles. L'analyse de ces modes met en lumi & egrave;re les diff & eacute;rentes fa & ccedil;ons dont l'apprentissage peut & ecirc;tre qualifi & eacute; d'<< actif >>. L'activit & eacute; se d & eacute;roule dans un mode d'interaction. Toujours selon Bennett, une activit & eacute; efficace exige des relations appropri & eacute;es entre l'& eacute;cart qui existe entre l'& eacute;tat actuel des choses et l'objectif, les ressources disponibles et les t & acirc;ches fix & eacute;es.1Vygotsky (1978) a soulign & eacute; que les << processus psychologiques sup & eacute;rieurs >> sont d'abord rencontr & eacute;s chez les autres.2Bennett (1993); voir aussi Shantock Systematics Group (1975)
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Active Learning for Intrusion Detection
    Gu, Yingjie
    Zydek, Dawid
    2014 NATIONAL WIRELESS RESEARCH COLLABORATION SYMPOSIUM (NWRCS 2014), 2014, : 117 - +
  • [32] Active Learning with Combinatorial Coverage
    Katragadda, Sai Prathyush
    Cody, Tyler
    Beling, Peter
    Freeman, Laura
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1129 - 1136
  • [33] Shift guided active learning
    Yang, Jianan
    Tan, Jimin
    Wang, Haobo
    Chen, Gang
    Wu, Sai
    Zhao, Junbo
    MACHINE LEARNING, 2025, 114 (02)
  • [34] Research and practice of active learning
    Wang Dan
    ICCSE'2006: Proceedings of the First International Conference on Computer Science & Education: ADVANCED COMPUTER TECHNOLOGY, NEW EDUCATION, 2006, : 448 - 451
  • [35] A stopping criterion for active learning
    Vlachos, Andreas
    COMPUTER SPEECH AND LANGUAGE, 2008, 22 (03) : 295 - 312
  • [36] To Actively Initialize Active Learning
    Yang Y.
    Loog M.
    Pattern Recognition, 2022, 131
  • [37] Combining active learning suggestions
    Tran, Alasdair
    Ong, Cheng Soon
    Wolf, Christian
    PEERJ COMPUTER SCIENCE, 2018,
  • [38] Active learning with adaptive regularization
    Wang, Zheng
    Yan, Shuicheng
    Zhang, Changshui
    PATTERN RECOGNITION, 2011, 44 (10-11) : 2375 - 2383
  • [39] LEARNING BY ACTIVE NONLINEAR DIFFUSION
    Maggioni, Mauro
    Murphy, James M.
    FOUNDATIONS OF DATA SCIENCE, 2019, 1 (03): : 271 - 291
  • [40] RATES OF CONVERGENCE IN ACTIVE LEARNING
    Hanneke, Steve
    ANNALS OF STATISTICS, 2011, 39 (01) : 333 - 361