On the growth of Fourier multipliers

被引:0
|
作者
Battseren, Bat-Od [1 ,2 ]
机构
[1] Univ Cote Azur, Lab Jean Alexandre Dieudonne LJAD, F-06108 Nice, France
[2] Vanderbilt Univ, Dept Math, 1326 Stevenson Ctr, Nashville, TN 37240 USA
关键词
locally compact groups; group algebras; Fourier multipliers; weak amenability; rapid decay property; L-P-SPACES; BOUNDED MULTIPLIERS; SCHUR MULTIPLIERS; ALGEBRA; LATTICES; METRICS;
D O I
10.4171/JNCG/551
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a sequence of functions, namely, tame cuts, in the Fourier algebra A(G) of a locally compact group G, which satisfies certain convergence and growth conditions. This new consideration allows us to give a group admitting a Fourier multiplier that is not completely bounded. Furthermore, we show that the induction map MA(F) ! MA(G) is not always continuous. We also show how Liao's property (TSchur, G, K) opposes tame cuts. Some examples are provided.
引用
收藏
页码:1209 / 1228
页数:20
相关论文
共 50 条
  • [11] Fourier multipliers and transfer operators
    Pollicott, Mark
    JOURNAL OF FRACTAL GEOMETRY, 2021, 8 (02) : 189 - 199
  • [12] Fourier Multipliers and Dirac Operators
    Nolder, Craig A.
    Wang, Guanghong
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2017, 27 (02) : 1647 - 1657
  • [13] FOURIER MULTIPLIERS IN SLn (R)
    Parcet, Javier
    Ricard, Eric
    De La Salle, Mikael
    DUKE MATHEMATICAL JOURNAL, 2022, 171 (06) : 1235 - 1297
  • [14] Fourier Multipliers and Dirac Operators
    Craig A. Nolder
    Guanghong Wang
    Advances in Applied Clifford Algebras, 2017, 27 : 1647 - 1657
  • [15] Weighted estimates for conic Fourier multipliers
    Antonio Córdoba
    Keith M. Rogers
    Mathematische Zeitschrift, 2014, 278 : 431 - 440
  • [16] Fourier multipliers of classical modulation spaces
    Feichtinger, Hans G.
    Narimani, Ghassem
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2006, 21 (03) : 349 - 359
  • [17] Markov dilations of semigroups of Fourier multipliers
    Arhancet, Cedric
    POSITIVITY, 2022, 26 (05)
  • [18] Multiplicative sufficient conditions for Fourier multipliers
    Kolomoitsev, Yu. S.
    IZVESTIYA MATHEMATICS, 2014, 78 (02) : 354 - 374
  • [19] FOURIER MULTIPLIERS ON GRADED LIE GROUPS
    Fischer, Veronique
    Ruzhansky, Michael
    COLLOQUIUM MATHEMATICUM, 2021, 165 (01) : 1 - 30
  • [20] FOURIER MULTIPLIERS VIA TWISTED CONVOLUTION
    Maity, Arup kumar
    Ratnakumar, P. K.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 153 (03) : 1145 - 1154