Enhancement of hydrogen-rich gas production by acetic acid steam reforming: characterization of Ni-Co modified biochar-based catalysts

被引:0
|
作者
Lin, Yucheng [1 ]
Ma, Tengjie [1 ,2 ]
Chen, Wei [3 ]
Hu, Junhao [1 ,2 ]
Pang, Shusheng [1 ,5 ]
Chang, Chun [1 ,2 ,3 ]
Li, Pan [1 ,2 ,3 ,4 ]
机构
[1] Zhengzhou Univ, Sch Chem Engn, State Key Lab Biobased Transport Fuel Technol, Zhengzhou, Peoples R China
[2] Zhengzhou Univ, Sch Mech & Power Engn, Zhengzhou, Peoples R China
[3] Henan Key Lab Green Mfg Biobased Chem, Puyang, Peoples R China
[4] Southeast Univ, Key Lab Energy Thermal Convers & Control, Minist Educ, Nanjing, Peoples R China
[5] Univ Canterbury, Dept Chem & Proc Engn, Canterbury, New Zealand
基金
中国国家自然科学基金;
关键词
catalytic reforming; biochar-based catalyst; acetic acid; hydrogen; CARBON DEPOSITION; SYNGAS PRODUCTION; FAST PYROLYSIS; LIGNITE CHAR; ETHANOL; PERFORMANCE; TOLUENE; PRECURSOR; NI/AL2O3; CRACKING;
D O I
10.1515/ijcre-2024-0120
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The development of cost-effective and highly efficient biochar-based catalysts is essential for the catalytic steam reforming process of bio-oil. In this study, pickling peanut shell biochar was used to prepare biochar-supported Ni/Co monometallic catalyst and biochar-supported nickel-Co bimetallic catalyst through the impregnation method. The catalytic effect of these catalysts on acetic acid (a bio-oil model compound) steam reforming was investigated. It was found that Co could enhance the dispersion of metal particles. The catalyst exhibited the best catalytic effect and significantly improved resistance to carbon deposition with a loading of 8 wt% and a Ni-to-Co ratio of 6:2. At the temperature of 600 degrees C and the S/C ratio of 3, the selectivity of H2 reached 84.48 %, and the conversion of acetic acid reached 95.49 %. A synergistic effect was observed between Ni and Co, leading to increased metal dispersion, enhanced reducibility, and a higher number of active centers. Co facilitates water dissociation and promotes the oxidation of C-H and mobile O, resulting in a faster decarbonization rate. The effective utilization of biochar-based catalysts and the rational utilization of bio-oil contribute to the timely achievement of carbon emission reduction targets.
引用
收藏
页码:923 / 938
页数:16
相关论文
共 50 条
  • [1] Steam reforming of acetic acid for hydrogen production over bifunctional Ni-Co catalysts
    Pant, Kamal K.
    Mohanty, Pravakar
    Agarwal, Sunit
    Dalai, Ajay K.
    CATALYSIS TODAY, 2013, 207 : 36 - 43
  • [2] Enhancement of hydrogen-rich gas production by co-pyrolysis of biomass and plastics: Feedstock synergistic effects and Ni/Co modified biochar-based catalysts
    Li, Pan
    Ma, Tengjie
    Chen, Hai
    Chen, Wei
    Hu, Junhao
    Bai, Jing
    Wu, Haoran
    Chang, Chun
    Pang, Shusheng
    FUEL, 2025, 385
  • [3] Study on the effect of Ni-modified biochar-based catalysts on the steam reforming process of biomass and plastics for hydrogen production
    He, Hengyu
    Zhou, Zhen
    Tian, Hong
    Sun, Chenyang
    Xuan, Yanni
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 119
  • [4] Hydrogen production by steam reforming of acetic acid over Ni-based catalysts
    Thaicharoensutcharittham, Somsak
    Meeyoo, Vissanu
    Kitiyanan, Boonyarach
    Rangsunvigit, Pramoch
    Rirksomboon, Thirasak
    CATALYSIS TODAY, 2011, 164 (01) : 257 - 261
  • [5] Hydrogen-rich syngas production from biomass pyrolysis and catalytic reforming using biochar-based catalysts
    Wang, Yanjie
    Huang, Liang
    Zhang, Tianyu
    Wang, Qiang
    FUEL, 2022, 313
  • [6] Hydrogen production from acetic acid steam reforming over Ti-modified Ni/Attapulgite catalysts
    Chen, Mingqiang
    Hu, Jiaxin
    Wang, Yishuang
    Wang, Chunsheng
    Tang, Zhiyuan
    Li, Chang
    Liang, Defang
    Cheng, Wen
    Yang, Zhonglian
    Zhang, Han
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (05) : 3651 - 3668
  • [7] Investigation of steam reforming of acetic acid to hydrogen over Ni-Co metal catalyst
    Hu, Xun
    Lu, Gongxuan
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2007, 261 (01) : 43 - 48
  • [8] Ni-Co Bimetallic Catalysts for Hydrogen Production by Steam Reforming Ethanol
    Romero, Leticia C.
    Moreno, M. Sergio
    Galetti, Agustin E.
    Barroso, Mariana N.
    TOPICS IN CATALYSIS, 2022, 65 (13-16) : 1427 - 1439
  • [9] Hydrogen production via steam reforming of acetic acid over biochar-supported nickel catalysts
    Chen, Junhao
    Wang, Meijuan
    Wang, Shurong
    Li, Xinbao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2018, 43 (39) : 18160 - 18168
  • [10] Selective production of hydrogen by acetone steam reforming over Ni-Co/olivine catalysts
    Basu, Sanchari
    Pradhan, Narayan C.
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2019, 127 (01) : 357 - 373