Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review

被引:2
作者
Liu, Shanghua [1 ]
Shi, Tianyu [1 ]
Yu, Junwen [1 ]
Li, Rui [1 ]
Lin, Hao [1 ]
Deng, Kejun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Ctr Informat Biol, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
bitter peptides; bitterness mechanism; database; predictive models; bioinformatics; TASTE RECEPTORS; BIOACTIVE PEPTIDES; APPLICABILITY DOMAIN; NEURAL-NETWORK; PROTEIN; FOOD; PREDICTION; SUPPORT; IDENTIFICATION; MODELS;
D O I
10.3390/ijms25189844
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
引用
收藏
页数:23
相关论文
共 214 条
[91]  
Khalid S, 2014, 2014 SCIENCE AND INFORMATION CONFERENCE (SAI), P372, DOI 10.1109/SAI.2014.6918213
[92]   Emerging Methods for Structural Analysis of Protein Aggregation [J].
Khan, Eshan ;
Mishra, Subodh K. ;
Kumar, Amit .
PROTEIN AND PEPTIDE LETTERS, 2017, 24 (04) :331-339
[93]   Quantitative structure-activity relationship study of bitter peptides [J].
Kim, Hyun-Ock ;
Li-Chan, Eunice C. Y. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (26) :10102-10111
[94]   Amino acid sequence analysis of bitter peptides from a soybean proglycinin subunit synthesized in Escherichia coli [J].
Kim, MR ;
Choi, SY ;
Kim, CS ;
Kim, CW ;
Utsumi, S ;
Lee, CH .
BIOSCIENCE BIOTECHNOLOGY AND BIOCHEMISTRY, 1999, 63 (12) :2069-2074
[95]   Bitter taste receptor activation by cholesterol and an intracellular tastant [J].
Kim, Yoojoong ;
Gumpper, Ryan H. ;
Liu, Yongfeng ;
Kocak, D. Dewran ;
Xiong, Yan ;
Cao, Can ;
Deng, Zhijie ;
Krumm, Brian E. ;
Jain, Manish K. ;
Zhang, Shicheng ;
Jin, Jian ;
Roth, Bryan L. .
NATURE, 2024, 628 (8008) :664-671
[96]   Bitter taste receptor agonists regulate epithelial two-pore potassium channels via cAMP signaling [J].
Kohanski, Michael A. ;
Brown, Lauren ;
Orr, Melissa ;
Tan, Li Hui ;
Adappa, Nithin D. ;
Palmer, James N. ;
Rubenstein, Ronald C. ;
Cohen, Noam A. .
RESPIRATORY RESEARCH, 2021, 22 (01)
[97]   Taste-modifying sweet protein, neoculin, is received at human T1R3 amino terminal domain [J].
Koizumi, Ayako ;
Nakajima, Ken-ichiro ;
Asakura, Tomiko ;
Morita, Yuji ;
Ito, Keisuke ;
Shmizu-Ibuka, Akiko ;
Misaka, Takumi ;
Abe, Keiko .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 358 (02) :585-589
[98]   Intestinal bitter taste receptor activation alters hormone secretion and imparts metabolic benefits [J].
Kok, Bernard P. ;
Galmozzi, Andrea ;
Littlejohn, Nicole K. ;
Albert, Verena ;
Godio, Cristina ;
Kim, Woojoo ;
Kim, Sean M. ;
Bland, Jeffrey S. ;
Grayson, Neile ;
Fang, Mingliang ;
Meyerhof, Wolfgang ;
Siuzdak, Gary ;
Srinivasan, Supriya ;
Behrens, Maik ;
Saez, Enrique .
MOLECULAR METABOLISM, 2018, 16 :76-87
[99]   Purification of serine carboxypeptidase from the hepatopancreas of Japanese common squid Todarodes pacificus and its application for elimination of bitterness from bitter peptides [J].
Komai, Tsuyoshi ;
Kawabata, Choko ;
Tojo, Hiroaki ;
Gocho, Shinobu ;
Ichishima, Eiji .
FISHERIES SCIENCE, 2007, 73 (02) :404-411
[100]   Automatic generation of bioinformatics tools for predicting protein-ligand binding sites [J].
Komiyama, Yusuke ;
Banno, Masaki ;
Ueki, Kokoro ;
Saad, Gul ;
Shimizu, Kentaro .
BIOINFORMATICS, 2016, 32 (06) :901-907