Research on Bitter Peptides in the Field of Bioinformatics: A Comprehensive Review

被引:2
作者
Liu, Shanghua [1 ]
Shi, Tianyu [1 ]
Yu, Junwen [1 ]
Li, Rui [1 ]
Lin, Hao [1 ]
Deng, Kejun [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Life Sci & Technol, Ctr Informat Biol, Chengdu 610054, Peoples R China
基金
中国国家自然科学基金;
关键词
bitter peptides; bitterness mechanism; database; predictive models; bioinformatics; TASTE RECEPTORS; BIOACTIVE PEPTIDES; APPLICABILITY DOMAIN; NEURAL-NETWORK; PROTEIN; FOOD; PREDICTION; SUPPORT; IDENTIFICATION; MODELS;
D O I
10.3390/ijms25189844
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bitter peptides are small molecular peptides produced by the hydrolysis of proteins under acidic, alkaline, or enzymatic conditions. These peptides can enhance food flavor and offer various health benefits, with attributes such as antihypertensive, antidiabetic, antioxidant, antibacterial, and immune-regulating properties. They show significant potential in the development of functional foods and the prevention and treatment of diseases. This review introduces the diverse sources of bitter peptides and discusses the mechanisms of bitterness generation and their physiological functions in the taste system. Additionally, it emphasizes the application of bioinformatics in bitter peptide research, including the establishment and improvement of bitter peptide databases, the use of quantitative structure-activity relationship (QSAR) models to predict bitterness thresholds, and the latest advancements in classification prediction models built using machine learning and deep learning algorithms for bitter peptide identification. Future research directions include enhancing databases, diversifying models, and applying generative models to advance bitter peptide research towards deepening and discovering more practical applications.
引用
收藏
页数:23
相关论文
共 214 条
[1]   Accurate structure prediction of biomolecular interactions with AlphaFold 3 [J].
Abramson, Josh ;
Adler, Jonas ;
Dunger, Jack ;
Evans, Richard ;
Green, Tim ;
Pritzel, Alexander ;
Ronneberger, Olaf ;
Willmore, Lindsay ;
Ballard, Andrew J. ;
Bambrick, Joshua ;
Bodenstein, Sebastian W. ;
Evans, David A. ;
Hung, Chia-Chun ;
O'Neill, Michael ;
Reiman, David ;
Tunyasuvunakool, Kathryn ;
Wu, Zachary ;
Zemgulyte, Akvile ;
Arvaniti, Eirini ;
Beattie, Charles ;
Bertolli, Ottavia ;
Bridgland, Alex ;
Cherepanov, Alexey ;
Congreve, Miles ;
Cowen-Rivers, Alexander I. ;
Cowie, Andrew ;
Figurnov, Michael ;
Fuchs, Fabian B. ;
Gladman, Hannah ;
Jain, Rishub ;
Khan, Yousuf A. ;
Low, Caroline M. R. ;
Perlin, Kuba ;
Potapenko, Anna ;
Savy, Pascal ;
Singh, Sukhdeep ;
Stecula, Adrian ;
Thillaisundaram, Ashok ;
Tong, Catherine ;
Yakneen, Sergei ;
Zhong, Ellen D. ;
Zielinski, Michal ;
Zidek, Augustin ;
Bapst, Victor ;
Kohli, Pushmeet ;
Jaderberg, Max ;
Hassabis, Demis ;
Jumper, John M. .
NATURE, 2024, 630 (8016) :493-500
[2]   Docking and Molecular Dynamics of Steviol Glycoside-Human Bitter Receptor Interactions [J].
Acevedo, Waldo ;
Gonzalez-Nilo, Fernando ;
Agosin, Eduardo .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2016, 64 (40) :7585-7596
[3]  
Acquah C., 2018, Journal of Food Bioactives, V4, P88, DOI [DOI 10.31665/JFB.2018.4164, 10.31665/JFB.2018.4164]
[4]   Encapsulation of bioactive peptides: a strategy to improve the stability, protect the nutraceutical bioactivity and support their food applications [J].
Aguilar-Toala, J. E. ;
Quintanar-Guerrero, D. ;
Liceaga, A. M. ;
Zambrano-Zaragoza, M. L. .
RSC ADVANCES, 2022, 12 (11) :6449-6458
[5]   DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity [J].
Ahmed, Asad ;
Mam, Bhavika ;
Sowdhamini, Ramanathan .
BIOINFORMATICS AND BIOLOGY INSIGHTS, 2021, 15
[6]   Antihypertensive Peptides from Food Proteins [J].
Aluko, Rotimi E. .
ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 6, 2015, 6 :235-262
[7]   Antihypertensive Peptides from Food Proteins [J].
Aluko, Rotimi E. .
ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 6, 2015, 6 :235-262
[8]  
Alvarez-Melis D, 2018, ADV NEUR IN, V31
[9]  
Amit SK., 2017, AGR FOOD SECUR, V6, P1, DOI [10.1186/S40066-017-0130-8/TABLES/21, DOI 10.1186/S40066-017-0130-8/TABLES/21, 10.1186/s40066-017-0130-8, DOI 10.1186/S40066-017-0130-8]
[10]   QUANTITATIVE STRUCTURE-ACTIVITY-RELATIONSHIPS OF THE BITTER THRESHOLDS OF AMINO-ACIDS, PEPTIDES, AND THEIR DERIVATIVES [J].
ASAO, M ;
IWAMURA, H ;
AKAMATSU, M ;
FUJITA, T .
JOURNAL OF MEDICINAL CHEMISTRY, 1987, 30 (10) :1873-1879