Spectral triples for noncommutative solenoids and a Wiener's lemma

被引:1
|
作者
Farsi, Carla [1 ]
Landry, Therese [2 ]
Larsen, Nadia S. [3 ]
Packer, Judith [1 ]
机构
[1] Univ Colorado Boulder, Dept Math, Boulder, CO 80309 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] Univ Oslo, Dept Math, POB 1053 Blindern, N-0316 Oslo, Norway
关键词
spectral triples; inductive limits; noncommutative solenoids; Wiener's lemma; C-ASTERISK-ALGEBRAS; CONVOLUTION; OPERATORS; SPACES;
D O I
10.4171/JNCG/557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener's lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.
引用
收藏
页码:1415 / 1452
页数:38
相关论文
共 50 条
  • [31] Spectral Order for Jordan Triples
    Turilova, Ekaterina A.
    Hamhalter, Jan
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2021, 313 (01) : 258 - 262
  • [32] Temporal Lorentzian spectral triples
    Franco, Nicolas
    REVIEWS IN MATHEMATICAL PHYSICS, 2014, 26 (08)
  • [33] Summability for nonunital spectral triples
    Rennie, A
    K-THEORY, 2004, 31 (01): : 71 - 100
  • [34] Spectral triples for the Sierpinski gasket
    Cipriani, Fabio
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (08) : 4809 - 4869
  • [35] Spectral triples and wavelets for higher-rank graphs
    Farsi, Carla
    Gillaspy, Elizabeth
    Julien, Antoine
    Kang, Sooran
    Packer, Judith
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)
  • [36] A generalization of Wiener's lemma and its application to Volterra difference equations on a Banach space
    Furumochi, T
    Murakami, S
    Nagabuchi, Y
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2004, 10 (13-15) : 1201 - 1214
  • [37] The Gromov-Hausdorff propinquity for metric spectral triples
    Latremoliere, Frederic
    ADVANCES IN MATHEMATICS, 2022, 404
  • [38] Noncommutative multi-parameter Wiener-Wintner type ergodic theorem
    Hong, Guixiang
    Sun, Mu
    JOURNAL OF FUNCTIONAL ANALYSIS, 2018, 275 (05) : 1100 - 1137
  • [39] Crossed product extensions of spectral triples
    Iochum, Bruno
    Masson, Thierry
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2016, 10 (01) : 65 - 133
  • [40] Constructing equivalence bimodules between noncommutative solenoids: A two-pronged approach
    Lu, Shen
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 507 (02)