Spectral triples for noncommutative solenoids and a Wiener's lemma

被引:1
|
作者
Farsi, Carla [1 ]
Landry, Therese [2 ]
Larsen, Nadia S. [3 ]
Packer, Judith [1 ]
机构
[1] Univ Colorado Boulder, Dept Math, Boulder, CO 80309 USA
[2] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[3] Univ Oslo, Dept Math, POB 1053 Blindern, N-0316 Oslo, Norway
关键词
spectral triples; inductive limits; noncommutative solenoids; Wiener's lemma; C-ASTERISK-ALGEBRAS; CONVOLUTION; OPERATORS; SPACES;
D O I
10.4171/JNCG/557
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct odd finitely summable spectral triples based on length functions of bounded doubling on noncommutative solenoids. Our spectral triples induce a Leibniz Lip-norm on the state spaces of the noncommutative solenoids, giving them the structure of Leibniz quantum compact metric spaces. By applying methods of R. Floricel and A. Ghorbanpour, we also show that our odd spectral triples on noncommutative solenoids can be considered as inductive limits of spectral triples on rotation algebras. In the final section, we prove a noncommutative version of Wiener's lemma and show that our odd spectral triples can be defined to have an associated smooth dense subalgebra which is stable under the holomorphic functional calculus, thus answering a question of B. Long and W. Wu. The construction of the smooth subalgebra also extends to the case of nilpotent discrete groups.
引用
收藏
页码:1415 / 1452
页数:38
相关论文
共 50 条
  • [21] Wiener’s lemma for singular integral operators of Bessel potential type
    Qiquan Fang
    Chang Eon Shin
    Qiyu Sun
    Monatshefte für Mathematik, 2014, 173 : 35 - 54
  • [22] Wiener's lemma for singular integral operators of Bessel potential type
    Fang, Qiquan
    Shin, Chang Eon
    Sun, Qiyu
    MONATSHEFTE FUR MATHEMATIK, 2014, 173 (01): : 35 - 54
  • [23] Convergence of Spectral Triples on Fuzzy Tori to Spectral Triples on Quantum Tori
    Latremoliere, Frederic
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 388 (02) : 1049 - 1128
  • [24] Spectral Flow for Nonunital Spectral Triples
    Carey, A. L.
    Gayral, V.
    Phillips, J.
    Rennie, A.
    Sukochev, F. A.
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2015, 67 (04): : 759 - 794
  • [25] A note on twisted crossed products and spectral triples
    Antonini, P.
    Guido, D.
    Isola, T.
    Rubin, A.
    JOURNAL OF GEOMETRY AND PHYSICS, 2022, 180
  • [26] Beyond Wiener’s Lemma: Nuclear Convolution Algebras and the Inversion of Digital Filters
    Julien Fageot
    Michael Unser
    John Paul Ward
    Journal of Fourier Analysis and Applications, 2019, 25 : 2037 - 2063
  • [27] COMPACT κ-DEFORMATION AND SPECTRAL TRIPLES
    Iochum, B.
    Masson, T.
    Schuecker, T.
    Sitarz, A.
    REPORTS ON MATHEMATICAL PHYSICS, 2011, 68 (01) : 37 - 64
  • [28] Spectral triples and the geometry of fractals
    Christensen, Erik
    Ivan, Cristina
    Schrohe, Elmar
    JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2012, 6 (02) : 249 - 274
  • [29] Extensions and Degenerations of Spectral Triples
    Christensen, Erik
    Ivan, Cristina
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (03) : 925 - 955
  • [30] Classification of finite spectral triples
    Krajewski, T
    JOURNAL OF GEOMETRY AND PHYSICS, 1998, 28 (1-2) : 1 - 30