Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

被引:0
|
作者
Apraiz, J. [1 ]
Doubova, A. [2 ]
Fernandez-Cara, E. [2 ]
Yamamoto, M. [3 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Barrio Sarriena s n, Leioa 48940, Bizkaia, Spain
[2] Univ Seville, Dept EDAN & IMUS, Campus Reina Mercedes, Seville 41012, Spain
[3] Univ Tokyo, Grad Sch Math Sci, Meguro, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
Burgers equation; Fluid-solid interaction; Free boundaries; Inverse problems; Stability; Uniqueness; SIMPLIFIED 1D MODEL; LARGE TIME BEHAVIOR;
D O I
10.1007/s42967-024-00437-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional fluid-solid interaction model governed by the Burgers equation with a time varying interface. We discuss the inverse problem of determining the shape of the interface from Dirichlet and Neumann data at one endpoint of the spatial interval. In particular, we establish unique results and some conditional stability estimates. For the proofs, we use and adapt some lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Inverse coefficient problems for one-dimensional time-fractional
    Imanuvilov, Oleg
    Ito, Kazufumi
    Yamamoto, Masahiro
    APPLIED MATHEMATICS LETTERS, 2025, 160
  • [42] SOME APPROACH TO THE ONE-DIMENSIONAL STEPHAN PROBLEMS (DIRECT AND INVERSE)
    SZCZUREK, J
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES TECHNIQUES, 1979, 27 (02): : 215 - 222
  • [44] DIFFERENTIAL OPERATOR METHOD FOR ONE-DIMENSIONAL INVERSE SCATTERING PROBLEMS
    CHEN, XA
    ZHANG, WX
    APPLIED MATHEMATICS LETTERS, 1991, 4 (06) : 1 - 4
  • [45] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Kh. Kh. Imomnazarov
    Sh. Kh. Imomnazarov
    P. V. Korobov
    A. E. Kholmurodov
    Doklady Mathematics, 2014, 89 : 250 - 252
  • [46] INVERSE DETERMINATION OF THERMAL-CONDUCTIVITY FOR ONE-DIMENSIONAL PROBLEMS
    LAM, TT
    YEUNG, WK
    JOURNAL OF THERMOPHYSICS AND HEAT TRANSFER, 1995, 9 (02) : 335 - 344
  • [47] Direct and inverse problems for nonlinear one-dimensional poroelasticity equations
    Imomnazarov, Kh. Kh.
    Imomnazarov, Sh. Kh.
    Korobov, P. V.
    Kholmurodov, A. E.
    DOKLADY MATHEMATICS, 2014, 89 (02) : 250 - 252
  • [48] TOWARD PRECISE SOLUTION OF ONE-DIMENSIONAL VELOCITY INVERSE PROBLEMS
    GRAY, SH
    HAGIN, F
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (02) : 346 - 355
  • [49] Direct and inverse problems of the relativistic one-dimensional oscillatory motion
    Homorodean, L.
    EPL, 2011, 95 (06)
  • [50] A BIE-BASED DtN-FEM FOR FLUID-SOLID INTERACTION PROBLEMS
    Yin, Tao
    Rathsfeld, Andreas
    Xu, Liwei
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2018, 36 (01) : 47 - 69