Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

被引:0
|
作者
Apraiz, J. [1 ]
Doubova, A. [2 ]
Fernandez-Cara, E. [2 ]
Yamamoto, M. [3 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Barrio Sarriena s n, Leioa 48940, Bizkaia, Spain
[2] Univ Seville, Dept EDAN & IMUS, Campus Reina Mercedes, Seville 41012, Spain
[3] Univ Tokyo, Grad Sch Math Sci, Meguro, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
Burgers equation; Fluid-solid interaction; Free boundaries; Inverse problems; Stability; Uniqueness; SIMPLIFIED 1D MODEL; LARGE TIME BEHAVIOR;
D O I
10.1007/s42967-024-00437-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional fluid-solid interaction model governed by the Burgers equation with a time varying interface. We discuss the inverse problem of determining the shape of the interface from Dirichlet and Neumann data at one endpoint of the spatial interval. In particular, we establish unique results and some conditional stability estimates. For the proofs, we use and adapt some lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities.
引用
收藏
页数:15
相关论文
共 50 条
  • [11] THE FACTORIZATION METHOD FOR AN INVERSE FLUID-SOLID INTERACTION SCATTERING PROBLEM
    Kirsch, Andreas
    Ruiz, Albert
    INVERSE PROBLEMS AND IMAGING, 2012, 6 (04) : 681 - 695
  • [12] One method of Fluid-Solid coupled interaction simulation
    Lin, Y. W.
    You, X. C.
    Zhuang, Z.
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 1095 - 1100
  • [13] Practical problems of dynamic similarity criteria in fluid-solid interaction at different fluid-solid relative motions
    Flaga, Andrzej
    Klaput, Renata
    Flaga, Lukasz
    ARCHIVES OF CIVIL ENGINEERING, 2024, 70 (01) : 97 - 120
  • [14] Mathematical models for fluid-solid interaction and their numerical solutions
    Surana, K. S.
    Blackwell, B.
    Powell, M.
    Reddy, J. N.
    JOURNAL OF FLUIDS AND STRUCTURES, 2014, 50 : 184 - 216
  • [15] THE EFFECTS OF DISSIPATION IN ONE-DIMENSIONAL INVERSE PROBLEMS
    CORONES, JP
    DAVISON, ME
    KRUEGER, RJ
    PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1983, 413 : 107 - 114
  • [16] STABILITY CONSIDERATIONS FOR ONE-DIMENSIONAL INVERSE PROBLEMS
    GRAY, SH
    SYMES, WW
    GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1985, 80 (01): : 149 - 163
  • [17] Modified transmission eigenvalues for inverse scattering in a fluid-solid interaction problem
    Monk, Peter
    Selgas, Virginia
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [18] APPLYING EVOLUTION STRATEGIES TO THE OPTIMIZATION OF FLUID-SOLID INTERACTION PROBLEMS
    Botello, Salvador
    Esqueda, Humberto
    Hernandez, Arturo
    Zarate, Francisco
    Valdes, J. Gerardo
    REVISTA INTERNACIONAL DE METODOS NUMERICOS PARA CALCULO Y DISENO EN INGENIERIA, 2007, 23 (04): : 415 - 428
  • [19] An immersed boundary method to solve fluid-solid interaction problems
    Noor, Dedy Zulhidayat
    Chern, Ming-Jyh
    Horng, Tzyy-Leng
    COMPUTATIONAL MECHANICS, 2009, 44 (04) : 447 - 453
  • [20] ON DYNAMICAL THREE-DIMENSIONAL FLUID-SOLID INTERACTION PROBLEM
    Avalishvili, Gia
    Avalishvili, Mariam
    Gordeziani, David
    GEORGIAN MATHEMATICAL JOURNAL, 2008, 15 (04) : 601 - 618