Inverse Problems for One-Dimensional Fluid-Solid Interaction Models

被引:0
|
作者
Apraiz, J. [1 ]
Doubova, A. [2 ]
Fernandez-Cara, E. [2 ]
Yamamoto, M. [3 ]
机构
[1] Univ Basque Country, Fac Ciencia & Tecnol, Dept Matemat, Barrio Sarriena s n, Leioa 48940, Bizkaia, Spain
[2] Univ Seville, Dept EDAN & IMUS, Campus Reina Mercedes, Seville 41012, Spain
[3] Univ Tokyo, Grad Sch Math Sci, Meguro, Tokyo 1538914, Japan
基金
日本学术振兴会;
关键词
Burgers equation; Fluid-solid interaction; Free boundaries; Inverse problems; Stability; Uniqueness; SIMPLIFIED 1D MODEL; LARGE TIME BEHAVIOR;
D O I
10.1007/s42967-024-00437-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a one-dimensional fluid-solid interaction model governed by the Burgers equation with a time varying interface. We discuss the inverse problem of determining the shape of the interface from Dirichlet and Neumann data at one endpoint of the spatial interval. In particular, we establish unique results and some conditional stability estimates. For the proofs, we use and adapt some lateral estimates that, in turn, rely on appropriate Carleman and interpolation inequalities.
引用
收藏
页数:15
相关论文
共 50 条