Attribute-Based Membership Inference Attacks and Defenses on GANs

被引:1
|
作者
Sun, Hui [1 ]
Zhu, Tianqing [2 ]
Li, Jie [1 ]
Ji, Shoulin [3 ]
Zhou, Wanlei [4 ]
机构
[1] China Univ Geosci, Wuhan 430079, Hubei, Peoples R China
[2] Univ Technol Sydney, Sydney, NSW 2007, Australia
[3] Zhejiang Univ, Hangzhou 310027, Zhejiang, Peoples R China
[4] City Univ Macau, Taipa, Macao, Peoples R China
关键词
Training; Image reconstruction; Generators; Generative adversarial networks; Codes; Privacy; Training data; Membership inference attack; generative adversarial networks; privacy leakage;
D O I
10.1109/TDSC.2023.3305591
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
With breakthroughs in high-resolution image generation, applications for disentangled generative adversarial networks (GANs) have attracted much attention. At the same time, the privacy issues associated with GAN models have been raising many concerns. Membership inference attacks (MIAs), where an adversary attempts to determine whether or not a sample has been used to train the victim model, are a major risk with GANs. In prior research, scholars have shown that successful MIAs can be mounted by leveraging overfit images. However, high-resolution images make the existing MIAs fail due to their complexity. And the nature of disentangled GANs is such that the attributes are overfitting, which means that, for an MIA to be successful, it must likely be based on overfitting attributes. Furthermore, given the empirical difficulties with obtaining independent and identically distributed (IID) candidate samples, choosing the non-trivial attributes of candidate samples as the target for exploring overfitting would be a more preferable choice. Hence, in this article, we propose a series of attribute-based MIAs that considers both black-box and white-box settings. The attacks are performed on the generator, and the inferences are derived by overfitting the non-trivial attributes. Additionally, we put forward a novel perspective on model generalization and a possible defense by evaluating the overfitting status of each individual attribute. A series of empirical evaluations in both settings demonstrate that the attacks remain stable and successful when using non-IID candidate samples. Further experiments illustrate that each attribute exhibits a distinct overfitting status. Moreover, manually generalizing highly overfitting attributes significantly reduces the risk of privacy leaks.
引用
收藏
页码:2376 / 2393
页数:18
相关论文
共 50 条
  • [1] Preserving Privacy in GANs Against Membership Inference Attack
    Shateri, Mohammadhadi
    Messina, Francisco
    Labeau, Fabrice
    Piantanida, Pablo
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 1728 - 1743
  • [2] Defenses to Membership Inference Attacks: A Survey
    Hu, Li
    Yan, Anli
    Yan, Hongyang
    Li, Jin
    Huang, Teng
    Zhang, Yingying
    Dong, Changyu
    Yang, Chunsheng
    ACM COMPUTING SURVEYS, 2024, 56 (04)
  • [3] Defending Against Membership Inference Attacks With High Utility by GAN
    Hu, Li
    Li, Jin
    Lin, Guanbiao
    Peng, Shiyu
    Zhang, Zhenxin
    Zhang, Yingying
    Dong, Changyu
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (03) : 2144 - 2157
  • [4] Membership Inference Attacks against GANs by Leveraging Over-representation Regions
    Hu, Hailong
    Pang, Jun
    CCS '21: PROCEEDINGS OF THE 2021 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY, 2021, : 2387 - 2389
  • [5] VAE-Based Membership Cleanser Against Membership Inference Attacks
    Hu, Li
    Yan, Hongyang
    Peng, Yun
    Hu, Haibo
    Wang, Shaowei
    Li, Jin
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2025, 22 (02) : 1253 - 1264
  • [6] Label-Only Membership Inference Attacks and Defenses in Semantic Segmentation Models
    Zhang, Guangsheng
    Liu, Bo
    Zhu, Tianqing
    Ding, Ming
    Zhou, Wanlei
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2023, 20 (02) : 1435 - 1449
  • [7] Source Inference Attacks: Beyond Membership Inference Attacks in Federated Learning
    Hu, Hongsheng
    Zhang, Xuyun
    Salcic, Zoran
    Sun, Lichao
    Choo, Kim-Kwang Raymond
    Dobbie, Gillian
    IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, 2024, 21 (04) : 3012 - 3029
  • [8] Membership Inference Attacks: Analysis and Mitigation
    Shuvo, Md Shamimur Rahman
    Alhadidi, Dima
    2020 IEEE 19TH INTERNATIONAL CONFERENCE ON TRUST, SECURITY AND PRIVACY IN COMPUTING AND COMMUNICATIONS (TRUSTCOM 2020), 2020, : 1411 - 1420
  • [9] mDARTS: Searching ML-Based ECG Classifiers Against Membership Inference Attacks
    Park, Eunbin
    Lee, Youngjoo
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (01) : 177 - 187
  • [10] Black-Box Based Limited Query Membership Inference Attack
    Zhang, Yu
    Zhou, Huaping
    Wang, Pengyan
    Yang, Gaoming
    IEEE ACCESS, 2022, 10 : 55459 - 55468