Saving Memory Space in Deep Neural Networks by Recomputing: A Survey

被引:0
|
作者
Ulidowski, Irek [1 ,2 ]
机构
[1] Univ Leicester, Sch Comp & Math Sci, Leicester, Leics, England
[2] AGH Univ Sci & Technol, Dept Appl Informat, Krakow, Poland
来源
REVERSIBLE COMPUTATION, RC 2023 | 2023年 / 13960卷
关键词
Deep Neural Networks; recomputing activations;
D O I
10.1007/978-3-031-38100-3_7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Training a multilayered neural network involves execution of the network on the training data, followed by calculating the error between the predicted and actual output, and then performing backpropagation to update the network's weights in order to minimise the overall error. This process is repeated many times, with the network updating its weights until it produces the desired output with a satisfactory level of accuracy. It requires storage in memory of activation and gradient data for each layer during each training run of the network. This paper surveys the main approaches to recomputing the needed activation and gradient data instead of storing it in memory. We discuss how these approaches relate to reversible computation techniques.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 50 条
  • [1] Deep Neural Networks on Chip - A Survey
    Huo Yingge
    Ali, Imran
    Lee, Kang-Yoon
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 589 - 592
  • [2] A survey of model compression for deep neural networks
    Li J.-Y.
    Zhao Y.-K.
    Xue Z.-E.
    Cai Z.
    Li Q.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2019, 41 (10): : 1229 - 1239
  • [3] Deep Neural Networks and Tabular Data: A Survey
    Borisov, Vadim
    Leemann, Tobias
    Sessler, Kathrin
    Haug, Johannes
    Pawelczyk, Martin
    Kasneci, Gjergji
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (06) : 7499 - 7519
  • [4] Model Compression for Deep Neural Networks: A Survey
    Li, Zhuo
    Li, Hengyi
    Meng, Lin
    COMPUTERS, 2023, 12 (03)
  • [5] A Survey of Attacks and Defenses for Deep Neural Networks
    Machooka, Daniel
    Yuan, Xiaohong
    Esterline, Albert
    2023 IEEE INTERNATIONAL CONFERENCE ON CYBER SECURITY AND RESILIENCE, CSR, 2023, : 254 - 261
  • [6] A Survey on Evolutionary Construction of Deep Neural Networks
    Zhou, Xun
    Qin, A. K.
    Gong, Maoguo
    Tan, Kay Chen
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2021, 25 (05) : 894 - 912
  • [7] POSTER: Design Space Exploration for Performance Optimization of Deep Neural Networks on Shared Memory Accelerators
    Venkataramani, Swagath
    Choi, Jungwook
    Srinivasan, Vijayalakshmi
    Gopalakrishnan, Kailash
    Chang, Leland
    2017 26TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT), 2017, : 146 - 147
  • [8] Video Summarization Using Deep Neural Networks: A Survey
    Apostolidis, Evlampios
    Adamantidou, Eleni
    Metsai, Alexandros, I
    Mezaris, Vasileios
    Patras, Ioannis
    PROCEEDINGS OF THE IEEE, 2021, 109 (11) : 1838 - 1863
  • [9] Efficient Processing of Deep Neural Networks: A Tutorial and Survey
    Sze, Vivienne
    Chen, Yu-Hsin
    Yang, Tien-Ju
    Emer, Joel S.
    PROCEEDINGS OF THE IEEE, 2017, 105 (12) : 2295 - 2329
  • [10] Explaining deep neural networks: A survey on the global interpretation methods
    Saleem, Rabia
    Yuan, Bo
    Kurugollu, Fatih
    Anjum, Ashiq
    Liu, Lu
    NEUROCOMPUTING, 2022, 513 : 165 - 180