Dynamics of Mean-Field Fermi Systems with Nonzero Pairing

被引:0
|
作者
Marcantoni, Stefano [1 ]
Porta, Marcello [2 ]
Sabin, Julien [3 ]
机构
[1] Univ Cote Azur Parc Valrose, F-06108 Nice, France
[2] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[3] Univ Rennes, Ave Gen Leclerc 263, F-35042 Rennes, France
来源
ANNALES HENRI POINCARE | 2024年
基金
欧洲研究理事会;
关键词
BOGOLIUBOV-DE-GENNES; HARTREE; EQUATION; LIMIT;
D O I
10.1007/s00023-024-01473-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study the dynamics of many-body Fermi systems, for a class of initial data which are close to quasi-free states exhibiting a nonvanishing pairing matrix. We focus on the mean-field scaling, which for fermionic systems is naturally coupled with a semiclassical scaling. Under the assumption that the initial datum enjoys a suitable semiclassical structure, we give a rigorous derivation of the time-dependent Hartree-Fock-Bogoliubov equation, a nonlinear effective evolution equation for the generalized one-particle density matrix of the system, as the number of particles goes to infinity. Our result holds for all macroscopic times, and provides bounds for the rate of convergence.
引用
收藏
页数:54
相关论文
共 50 条
  • [1] Partial mean-field model for neurotransmission dynamics
    Montefusco, Alberto
    Helfmann, Luzie
    Okunola, Toluwani
    Winkelmann, Stefanie
    Schuette, Christof
    MATHEMATICAL BIOSCIENCES, 2024, 369
  • [2] Mean-Field Dynamics for the Nelson Model with Fermions
    Leopold, Nikolai
    Petrat, Soeren
    ANNALES HENRI POINCARE, 2019, 20 (10): : 3471 - 3508
  • [3] Mean-field dynamics of fermions with relativistic dispersion
    Benedikter, Niels
    Porta, Marcello
    Schlein, Benjamin
    JOURNAL OF MATHEMATICAL PHYSICS, 2014, 55 (02)
  • [4] Stochastic Mean-Field Approach to Fluid Dynamics
    Hochgerner, Simon
    JOURNAL OF NONLINEAR SCIENCE, 2018, 28 (02) : 725 - 737
  • [5] Bogoliubov correction to the mean-field dynamics of interacting bosons
    Phan Thanh Nam
    Napiorkowski, Marcin
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2017, 21 (03) : 683 - 738
  • [6] A note on the validity of Bogoliubov correction to mean-field dynamics
    Phan Thanh Nam
    Napiorkowski, Marcin
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (05): : 662 - 688
  • [7] Energy dependent isospin asymmetry in mean-field dynamics
    Gaitanos, T.
    Kaskulov, M.
    NUCLEAR PHYSICS A, 2012, 878 : 49 - 66
  • [8] Mean-Field Dynamics: Singular Potentials and Rate of Convergence
    Knowles, Antti
    Pickl, Peter
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 298 (01) : 101 - 138
  • [9] Mean field dynamics of interacting fermionic systems
    Porta, Marcello
    MATHEMATICAL PROBLEMS IN QUANTUM PHYSICS, 2018, 717 : 13 - 30
  • [10] Derivation of mean-field equations for stochastic particle systems
    Grosskinsky, Stefan
    Jatuviriyapornchai, Watthanan
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) : 1455 - 1475