Microencapsulated rice bran alleviates hyperlipidemia induced by high-fat diet via regulating lipid metabolism and gut microbiota

被引:0
|
作者
Wang, Danni [1 ]
Liu, Xianbiao [3 ]
Luo, Ting [1 ]
Wei, Teng [1 ]
Zhou, Zeqiang [1 ]
Deng, Zeyuan [1 ,2 ]
机构
[1] Nanchang Univ, State Key Lab Food Sci & Resources, Nanchang 330047, Jiangxi, Peoples R China
[2] Nanchang Univ, Int Inst Food Innovat, Nanchang, Jiangxi, Peoples R China
[3] Ganzhou Comprehens Inspect & Testing Inst, Jiangxi Prov Selenium Rich Prod Qual Supervis & In, Ganzhou, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
gut microbiota; hyperlipidemia; lipid metabolism; microencapsulation; rice bran; FIBER; OBESE; DYSLIPIDEMIA; ADIPOCYTES; RATS; OIL;
D O I
10.1111/1750-3841.17174
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Hyperlipidemia has been suggested to be associated with dysregulation of lipid metabolism and gut microbiota. The present study prepared microencapsulated rice bran (MRB) with high stability based on in situ rice bran oil embedding and investigated the effects of MRB on lipid metabolism and gut microbiota in hyperlipidemic mice induced by high-fat diet (HFD). Results showed that compared to HFD fed mice, lipid levels in serum and hepatic lipid accumulation were reduced in mice fed with MRB, which was potentially associated with the fact that MRB decreased the expression of genes related to lipogenesis (Srebp1c, Acc, Hmgcr, and Fas) and increased the expression of genes related to lipid catabolism (Hsl, Atgl) and oxidation (Acox, Cpt1, Ucp1) (p < 0.05). In gut, MRB supplementation significantly elevated the abundance of beneficial bacteria, such as Dubosiella and Faecalibaculum. In addition, significant increase in short-chain fatty acid was observed in mice from MRB groups when compared to HFD groups (p < 0.05). Overall, this study suggested that MRB could alleviate the hyperlipidemia induced by HFD, which was related to the alteration of lipid metabolism and gut microbiota.
引用
收藏
页码:5870 / 5883
页数:14
相关论文
共 50 条
  • [41] Dietary chlorogenic acid alleviates high-fat diet-induced steatotic liver disease by regulating metabolites and gut microbiota
    Yu, Yujuan
    Zeng, Fumao
    Han, Peiheng
    Zhang, Li
    Yang, Ling
    Zhou, Feng
    Liu, Qing
    Ruan, Zheng
    INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2024, 75 (04) : 369 - 384
  • [42] Holothuria Leucospilota Polysaccharides Ameliorate Hyperlipidemia in High-Fat Diet-Induced Rats via Short-Chain Fatty Acids Production and Lipid Metabolism Regulation
    Yuan, Yiqiong
    Liu, Qibing
    Zhao, Fuqiang
    Cao, Jun
    Shen, Xuanri
    Li, Chuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (19)
  • [43] Adzuki Bean Alleviates Obesity and Insulin Resistance Induced by a High-Fat Diet and Modulates Gut Microbiota in Mice
    Zhao, Qingyu
    Hou, Dianzhi
    Fu, Yongxia
    Xue, Yong
    Guan, Xiao
    Shen, Qun
    NUTRIENTS, 2021, 13 (09)
  • [44] Quercetin Reduces High-Fat Diet-Induced Fat Accumulation in the Liver by Regulating Lipid Metabolism Genes
    Jung, Chang Hwa
    Cho, Iljin
    Ahn, Jiyun
    Jeon, Tae-Il
    Ha, Tae-Youl
    PHYTOTHERAPY RESEARCH, 2013, 27 (01) : 139 - 143
  • [45] Alginate oligosaccharide improves lipid metabolism and inflammation by modulating gut microbiota in high-fat diet fed mice
    Yuting Wang
    Lili Li
    Changqing Ye
    Jingyi Yuan
    Song Qin
    Applied Microbiology and Biotechnology, 2020, 104 : 3541 - 3554
  • [46] Extracts of Ganoderma lucidum attenuate lipid metabolism and modulate gut microbiota in high-fat diet fed rats
    Hu, Rongkang
    Guo, Weiling
    Huang, Zirui
    Li, Lu
    Liu, Bin
    Lv, Xucong
    JOURNAL OF FUNCTIONAL FOODS, 2018, 46 : 403 - 412
  • [47] Tree peony seed oil alleviates hyperlipidemia and hyperglycemia by modulating gut microbiota and metabolites in high-fat diet mice
    Liang, Ziyue
    He, Yinglong
    Wei, Dongfeng
    Fu, Peixin
    Li, Yuying
    Wang, Hao
    Yang, Di
    Hou, Xiaogai
    FOOD SCIENCE & NUTRITION, 2024, 12 (06): : 4421 - 4434
  • [48] A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice
    Liang, Huijing
    Jiang, Fengling
    Cheng, Ruyue
    Luo, Yating
    Wang, Jiani
    Luo, Zihao
    Li, Ming
    Shen, Xi
    He, Fang
    EXPERIMENTAL ANIMALS, 2021, 70 (01) : 73 - 83
  • [49] Protective Effects of Hydroxyphenyl Propionic Acids on Lipid Metabolism and Gut Microbiota in Mice Fed a High-Fat Diet
    Guo, Jingling
    Wang, Pan
    Cui, Yifan
    Hu, Xiaosong
    Chen, Fang
    Ma, Chen
    NUTRIENTS, 2023, 15 (04)
  • [50] Modulation of fat metabolism and gut microbiota by resveratrol on high-fat diet-induced obese mice
    Campbell, C. Linda
    Yu, Renqiang
    Li, Fengzhi
    Zhou, Qin
    Chen, Daozhen
    Qi, Ce
    Yin, Yongxiang
    Sun, Jin
    DIABETES METABOLIC SYNDROME AND OBESITY-TARGETS AND THERAPY, 2019, 12 : 97 - 107