Scalable transfer printing approach to heterogeneous integration of InP lasers on silicon-on-insulator waveguide platform

被引:2
作者
Ghosh, Samir [1 ]
O'Callaghan, James [1 ]
Moynihan, Owen [1 ]
Huang, Duanni [2 ]
Frish, Harel [2 ]
Rong, Haisheng [2 ]
Thomas, Kevin [1 ]
Pelucchi, Emanuele [1 ]
Corbett, Brian [1 ]
机构
[1] Tyndall Natl Inst, Lee Maltings Complex, Cork T12 R5CP, Ireland
[2] Intel Corp, 3600 Juliette Ln, Santa Clara, CA 95054 USA
基金
爱尔兰科学基金会;
关键词
PHOTONICS; WAFERS; OXIDE; CHIP; DIES;
D O I
10.1063/5.0223167
中图分类号
O59 [应用物理学];
学科分类号
摘要
InP-based edge-emitting O-band lasers are integrated onto silicon photonics circuit employing micro-transfer printing technology. Blocks of unpatterned InP gain material of typical size 1000 x 60 mu m(2) are first transferred onto 400 nm thick silicon rib waveguides with the fabrication steps performed on the target wafer to realize the final lasers. As a result, the InP ridge waveguides are aligned with lithographic accuracy to the underlying Si waveguides resulting in an approach free from any misalignment stemming from the transfer printing process. The fabricated Distributed Bragg Reflector laser shows lasing around 100 mA current injection with minimum 1 mW of output power coupled to a single mode fiber. This integration method paves a reliable route toward scaling-up the integration of active devices such as lasers, modulators, and detectors on 300-mm diameter silicon wafers, which requires high-uniformity across the wafer.
引用
收藏
页数:8
相关论文
共 43 条
[1]   Adhesive-free bonding for hetero-integration of InP based coupons micro-transfer printed on SiO 2 into Complementary Metal-Oxide-Semiconductor backend for Si photonics application on 8 " wafer platform [J].
Anand, K. ;
Steglich, P. ;
Kreissl, J. ;
Chavarin, C. A. ;
Spirito, D. ;
Franck, M. ;
Lecci, G. ;
Costina, I. ;
Herfurth, N. ;
Katzer, J. ;
Mai, C. ;
Becker, A. ;
Reithmaier, J. P. ;
Zimmermann, L. ;
Mai, A. .
THIN SOLID FILMS, 2024, 799
[2]   An on-chip photonic deep neural network for image classification [J].
Ashtiani, Farshid ;
Geers, Alexander J. ;
Aflatouni, Firooz .
NATURE, 2022, 606 (7914) :501-+
[3]   Adhesive wafer bonding with ultra-thin intermediate polymer layers [J].
Bleiker, S. J. ;
Dubois, V. ;
Schroder, S. ;
Stemme, G. ;
Niklaus, F. .
SENSORS AND ACTUATORS A-PHYSICAL, 2017, 260 :16-23
[4]   Spectrographs for astrophotonics [J].
Blind, N. ;
Le Coarer, E. ;
Kern, P. ;
Gousset, S. .
OPTICS EXPRESS, 2017, 25 (22) :27341-27369
[5]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[6]   Transfer print techniques for heterogeneous integration of photonic components [J].
Corbett, Brian ;
Loi, Ruggero ;
Zhou, Weidong ;
Liu, Dong ;
Ma, Zhenqiang .
PROGRESS IN QUANTUM ELECTRONICS, 2017, 52 :1-17
[7]   Turnkey locking of quantum-dot lasers directly grown on Si [J].
Dong, Bozhang ;
Wan, Yating ;
Chow, Weng W. ;
Shang, Chen ;
Prokoshin, Artem ;
Alkhazraji, Emad ;
Koscica, Rosalyn ;
Wang, Heming ;
Bowers, John E. .
NATURE PHOTONICS, 2024, 18 (07) :669-676
[8]  
Elshaari AW, 2020, NAT PHOTONICS, V14, P285, DOI 10.1038/s41566-020-0609-x
[9]   Surface organization of homoepitaxial InP films grown by metalorganic vapor-phase epitaxy [J].
Gocalinska, A. ;
Manganaro, M. ;
Pelucchi, E. ;
Vvedensky, D. D. .
PHYSICAL REVIEW B, 2012, 86 (16)
[10]   Selectively Grown III-V Lasers for Integrated Si-Photonics [J].
Han, Yu ;
Xue, Ying ;
Yan, Zhao ;
Lau, Kei May .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2021, 39 (04) :940-948