A Comparative Study of Deep Learning Approaches for Cognitive Impairment Diagnosis Based on the Clock-Drawing Test

被引:0
作者
Jimenez-Mesa, Carmen [1 ,2 ]
Arco, Juan E. [1 ,2 ]
Valenti-Soler, Meritxell [4 ]
Frades-Payo, Belen [4 ]
Zea-Sevilla, Maria A. [4 ]
Ortiz, Andres [1 ,3 ]
Avila-Villanueva, Marina [5 ]
Ramirez, Javier [1 ,2 ]
Del Ser-Quijano, Teodoro [4 ]
Carnero-Pardo, Cristobal [6 ]
Gorriz, Juan M. [1 ,2 ]
机构
[1] Univ Granada, Data Sci & Computat Intelligence DASCI Inst, Granada, Spain
[2] Univ Granada, Dept Signal Theory Networking & Commun, Granada 18010, Spain
[3] Univ Malaga, Dept Commun Engn, Malaga 29010, Spain
[4] CIEN Fdn, Carlos III Inst Hlth, Alzheimer Dis Res Unit, Queen Sofia Fdn Alzheimer Ctr, Madrid, Spain
[5] Autonomous Univ Madrid, Dept Biol & Hlth Psychol, Madrid 28049, Spain
[6] FIDYAN Neuroctr, Granada, Spain
来源
ARTIFICIAL INTELLIGENCE FOR NEUROSCIENCE AND EMOTIONAL SYSTEMS, PT I, IWINAC 2024 | 2024年 / 14674卷
关键词
Alzheimer's Disease; Attentive pairwise interaction; Clock Drawing Test; Cognitive impairment; Deep Learning; Image processing;
D O I
10.1007/978-3-031-61140-7_19
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The global prevalence of dementia is on the rise, posing a challenge to healthcare systems worldwide. The disease leads to irreversible deterioration of cognitive function, which underlines the importance of early detection to mitigate its impact. The Clock Drawing Test (CDT) is a widely used tool in cognitive assessment, as it involves manually drawing a clock on a piece of paper. Despite its widespread use, CDT scoring methods often rely on subjective expert assessments. Thus, machine learning and deep learning-based models are recently being proposed for the automated evaluation of CDT drawings. In this study, we compare two state-of-the-art models, a simple CNN and API-Net, as cognitive state classification systems. Two databases were used, one from Spanish clinical centers (7009 samples) and the other from a hospital in Thailand (3108 samples). The obtained results align with expected accuracy rates in such scenarios (around 80%) and are similar in both models. Specifically, the accuracy rates obtained with the Spanish database are 75.65% and 72.42%, and with the Thai database, 86.42% and 86.90%. This reflects that the implementation of an excessively complex model is not necessary given the available sample size and the binary classification scenario. Therefore, although both models could be useful in the clinical domain, opting for models with lower computational costs is advisable to make them more cost-effective and easily accessible.
引用
收藏
页码:191 / 200
页数:10
相关论文
共 20 条
  • [1] [Anonymous], 1994, Clock Drawing: A Neuropsychological Analysis
  • [2] Bruner J. S., 1986, STUDY THINKING
  • [3] Evaluation of Digital Drawing Tests and Paper-and-Pencil Drawing Tests for the Screening of Mild Cognitive Impairment and Dementia: A Systematic Review and Meta-analysis of Diagnostic Studies
    Chan, Joyce Y. C.
    Bat, Baker K. K.
    Wong, Adrian
    Chan, Tak Kit
    Huo, Zhaohua
    Yip, Benjamin H. K.
    Kowk, Timothy C. Y.
    Tsoi, Kelvin K. F.
    [J]. NEUROPSYCHOLOGY REVIEW, 2022, 32 (03) : 566 - 576
  • [4] Cheng SY, 2020, SCI REP-UK, V10, DOI [10.1038/s41598-020-59704-x, 10.1038/s41598-020-74710-9]
  • [5] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [6] MINI-MENTAL STATE - PRACTICAL METHOD FOR GRADING COGNITIVE STATE OF PATIENTS FOR CLINICIAN
    FOLSTEIN, MF
    FOLSTEIN, SE
    MCHUGH, PR
    [J]. JOURNAL OF PSYCHIATRIC RESEARCH, 1975, 12 (03) : 189 - 198
  • [7] Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
    Gorriz, J. M.
    Avarez-Illan, I.
    Avarez-Marquina, A.
    Arco, J. E.
    Atzmueller, M.
    Ballarini, F.
    Barakova, E.
    Bologna, G.
    Bonomini, P.
    Castellanos-Dominguez, G.
    Castillo-Barnes, D.
    Cho, S. B.
    Contreras, R.
    Cuadra, J. M.
    Dominguez, E.
    Dominguez-Mateos, F.
    Duro, R. J.
    Elizondo, D.
    Fernandez-Caballero, A.
    Fernandez-Jover, E.
    Formoso, M. A.
    Gallego-Molina, N. J.
    Gamazo, J.
    Gonzalez, J. Garcia
    Garcia-Rodriguez, J.
    Garre, C.
    Garrigos, J.
    Gomez-Rodellar, A.
    Gomez-Vilda, P.
    Grana, M.
    Guerrero-Rodriguez, B.
    Hendrikse, S. C. F.
    Jimenez-Mesa, C.
    Jodra-Chuan, M.
    Julian, V.
    Kotz, G.
    Kutt, K.
    Leming, M.
    de Lope, J.
    Macas, B.
    Marrero-Aguiar, V.
    Martinez, J. J.
    Martinez-Murcia, F. J.
    Martinez-Tomas, R.
    Mekyska, J.
    Nalepa, G. J.
    Novais, P.
    Orellana, D.
    Ortiz, A.
    Palacios-Alonso, D.
    [J]. INFORMATION FUSION, 2023, 100
  • [8] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [9] Automatic Classification System for Diagnosis of Cognitive Impairment Based on the Clock-Drawing Test
    Jimenez-Mesa, C.
    Arco, Juan E.
    Valenti-Soler, M.
    Frades-Payo, B.
    Zea-Sevilla, M. A.
    Ortiz, A.
    Avila-Villanueva, M.
    Castillo-Barnes, Diego
    Ramirez, J.
    Del Ser-Quijano, T.
    Carnero-Pardo, C.
    Gorriz, J. M.
    [J]. ARTIFICIAL INTELLIGENCE IN NEUROSCIENCE: AFFECTIVE ANALYSIS AND HEALTH APPLICATIONS, PT I, 2022, 13258 : 34 - 42
  • [10] Using Explainable Artificial Intelligence in the Clock Drawing Test to Reveal the Cognitive Impairment Pattern
    Jimenez-Mesa, Carmen
    Arco, Juan E.
    Valenti-Soler, Meritxell
    Frades-Payo, Belen
    Zea-Sevilla, Maria A.
    Ortiz, Andres
    Avila-Villanueva, Marina
    Castillo-Barnes, Diego
    Ramirez, Javier
    Del Ser-Quijano, Teodoro
    Carnero-Pardo, Cristobal
    Gorriz, Juan M.
    [J]. INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2023, 33 (04)