Imprints of massive black-hole binaries on neighbouring decihertz gravitational-wave sources

被引:1
|
作者
Stegmann, Jakob [1 ,2 ]
Zwick, Lorenz [3 ,4 ]
Vermeulen, Sander M. [2 ,5 ]
Antonini, Fabio [2 ]
Mayer, Lucio [4 ]
机构
[1] Max Planck Inst Astrophys, Garching, Germany
[2] Cardiff Univ, Grav Explorat Inst, Sch Phys & Astron, Cardiff, Wales
[3] Niels Bohr Inst, Niels Bohr Int Acad, Copenhagen, Denmark
[4] Univ Zurich, Inst Computat Sci, Ctr Theoret Astrophys & Cosmol, Zurich, Switzerland
[5] CALTECH, Dept Phys, Pasadena, CA USA
来源
NATURE ASTRONOMY | 2024年 / 8卷 / 10期
基金
英国科学技术设施理事会; 瑞士国家科学基金会;
关键词
NUCLEAR STAR-CLUSTERS; DARK-MATTER HALOES; MERGER RATES; AGN DISCS; EVOLUTION; LIMITS; RADIATION; METALLICITY; PROGENITORS; PULSARS;
D O I
10.1038/s41550-024-02338-0
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The most massive black holes in our Universe form binaries at the centre of merging galaxies. The recent evidence for a gravitational-wave (GW) background from pulsar timing may constitute the first observation that these supermassive black-hole binaries (SMBHBs) merge. Yet, the most massive SMBHBs are out of reach of interferometric GW detectors and are exceedingly difficult to resolve individually with pulsar timing. These limitations call for unexplored strategies to detect individual SMBHBs in the uncharted frequency band less than or similar to 10(-5) Hz to establish their abundance and decipher the coevolution with their host galaxies. Here we show that SMBHBs imprint detectable long-term modulations on GWs from stellar-mass binaries residing in the same galaxy at a distance d less than or similar to 1 kpc. We determine that proposed decihertz GW interferometers sensitive to numerous stellar-mass binaries could uncover modulations from similar to O(10(-1)-10(4)) SMBHBs with masses similar to O(10(7)-10(8)) M-circle dot out to redshift z approximate to 3.5. This offers a unique opportunity to map the population of SMBHBs through cosmic time, which might remain inaccessible otherwise.
引用
收藏
页码:1321 / 1331
页数:11
相关论文
共 50 条
  • [1] Strongly Lensed Supermassive Black Hole Binaries as Nanohertz Gravitational-wave Sources
    Khusid, Nicole M.
    Mingarelli, Chiara M. F.
    Natarajan, Priyamvada
    Casey-Clyde, J. Andrew
    Barnacka, Anna
    ASTROPHYSICAL JOURNAL, 2023, 955 (01)
  • [2] Efficient Large-Scale, Targeted Gravitational-Wave Probes of Supermassive Black-Hole Binaries
    Charisi, Maria
    Taylor, Stephen R.
    Witt, Caitlin A.
    Runnoe, Jessie
    PHYSICAL REVIEW LETTERS, 2024, 132 (06)
  • [3] Numerical simulations of black-hole binaries and gravitational wave emission
    Sperhake, Ulrich
    Berti, Emanuele
    Cardoso, Vitor
    COMPTES RENDUS PHYSIQUE, 2013, 14 (04) : 306 - 317
  • [4] Stars Stripped in Binaries: The Living Gravitational-wave Sources
    Gotberg, Y.
    Korol, V
    Lamberts, A.
    Kupfer, T.
    Breivik, K.
    Ludwig, B.
    Drout, M. R.
    ASTROPHYSICAL JOURNAL, 2020, 904 (01)
  • [5] Gravitational-Wave Background as a Probe of the Primordial Black-Hole Abundance
    Saito, Ryo
    Yokoyama, Jun'ichi
    PHYSICAL REVIEW LETTERS, 2009, 102 (16)
  • [6] Leveraging gravitational-wave memory to distinguish neutron star-black hole binaries from black hole binaries
    Tiwari, Shubhanshu
    Ebersold, Michael
    Hamilton, Eleanor Z.
    PHYSICAL REVIEW D, 2021, 104 (12)
  • [7] Gas-driven massive black hole binaries: signatures in the nHz gravitational wave background
    Kocsis, B.
    Sesana, A.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2011, 411 (03) : 1467 - 1479
  • [8] Landscape of stellar-mass black-hole spectroscopy with third-generation gravitational-wave detectors
    Bhagwat, Swetha
    Pacilio, Costantino
    Pani, Paolo
    Mapelli, Michela
    PHYSICAL REVIEW D, 2023, 108 (04)
  • [9] Astrophysics and cosmology with a decihertz gravitational-wave detector: TianGO
    Kuns, Kevin A.
    Yu, Hang
    Chen, Yanbei
    Adhikari, Rana X.
    PHYSICAL REVIEW D, 2020, 102 (04)
  • [10] The astrophysical science case for a decihertz gravitational-wave detector
    Mandel, Ilya
    Sesana, Alberto
    Vecchio, Alberto
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (05)