Scalar curvature for metric spaces: Defining curvature for quantum gravity without coordinates

被引:1
|
作者
Van der Duin, Jesse [1 ]
Silva, Agustin [1 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, High Energy Phys Dept, Nijmegen, Netherlands
关键词
D O I
10.1103/PhysRevD.110.026013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Geometrical properties of spacetime are difficult to study in nonperturbative approaches to quantum gravity like causal dynamical triangulations (CDT), where one uses simplicial manifolds to define the gravitational path integral, instead of Riemannian manifolds. In particular, in CDT one only relies on two mathematical tools, a distance measure and a volume measure. In this paper, we define a notion of scalar curvature, for metric spaces endowed with a volume measure or a random walk, without assuming nor using notions of tensor calculus. Furthermore, we directly define the Ricci scalar, without the need of defining and computing the Riemann or the Ricci tensor a priori. For this, we make use of quantities, like the surface of a geodesic sphere, or the return probability of scalar diffusion processes, that can be computed in these metric spaces, as in a Riemannian manifold, where they receive scalar curvature contributions. Our definitions recover the classical results of scalar curvature when the sets are Riemannian manifolds. We propose two methods to compute the scalar curvature in these spaces, and we compare their features in natural implementations in discrete spaces. The defined generalized scalar curvatures are easily implemented on discrete spaces, like graphs. We present the results of our definitions on random triangulations of a 2D sphere and plane. Additionally, we show the results of our generalized scalar curvatures on the quantum geometries of 2D CDT, where we find that all our definitions indicate a flat ground state of the gravitational path integral.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Curvature scalar instability in f(R) gravity
    Sotiriou, Thomas P.
    PHYSICS LETTERS B, 2007, 645 (5-6) : 389 - 392
  • [32] Emergent gravity in spaces of constant curvature
    Orlando Alvarez
    Matthew Haddad
    Journal of High Energy Physics, 2017
  • [33] Emergent gravity in spaces of constant curvature
    Alvarez, Orlando
    Haddad, Matthew
    JOURNAL OF HIGH ENERGY PHYSICS, 2017, (03):
  • [34] Asymptotically free scalar curvature-ghost coupling in quantum Einstein gravity
    Eichhorn, Astrid
    Gies, Holger
    Scherer, Michael M.
    PHYSICAL REVIEW D, 2009, 80 (10):
  • [35] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341
  • [36] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    de Lima, Eudes L.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco A. L.
    SAO PAULO JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 (01): : 320 - 341
  • [37] NOTE ON REALITY OF SCALAR CURVATURE OF UNITARY SPACES
    BUCHDAHL, HA
    TENSOR, 1972, 23 (03): : 307 - 308
  • [38] On scalar curvature rigidity of vacuum static spaces
    Qing, Jie
    Yuan, Wei
    MATHEMATISCHE ANNALEN, 2016, 365 (3-4) : 1257 - 1277
  • [39] On the scalar curvature of hypersurfaces in spaces with a Killing field
    Albujer, Alma L.
    Aledo, Juan A.
    Alias, Luis J.
    ADVANCES IN GEOMETRY, 2010, 10 (03) : 487 - 503
  • [40] Infinite loop spaces and positive scalar curvature
    Boris Botvinnik
    Johannes Ebert
    Oscar Randal-Williams
    Inventiones mathematicae, 2017, 209 : 749 - 835