Forecasting bilateral asylum seeker flows with high-dimensional data and machine learning techniques

被引:1
作者
Boss, Konstantin [1 ,2 ]
Groeger, Andre [1 ,2 ,3 ]
Heidland, Tobias [4 ,5 ,6 ]
Krueger, Finja [4 ]
Zheng, Conghan [1 ,2 ]
机构
[1] Univ Autonoma Barcelona, Dept Econ & Econ Hist, Bellaterra 08193, Spain
[2] Barcelona Sch Econ BSE, Barcelona 08005, Spain
[3] Ctr Econ Policy Res CEPR, London EC1V 0DX, England
[4] Inst World Econ IfW, D-24105 Kiel, Germany
[5] Univ Kiel, D-24118 Kiel, Germany
[6] Inst Study Labor IZA, D-53113 Bonn, Germany
基金
欧洲研究理事会;
关键词
forecasting; refugee migration; asylum seeker; mixed migration; European Union; machine learning; Google Trends; C53; C55; F22; PRINCIPAL COMPONENTS; POLICY;
D O I
10.1093/jeg/lbae023
中图分类号
F [经济];
学科分类号
02 ;
摘要
We develop monthly asylum seeker flow forecasting models for 157 origin countries to the EU27, using machine learning and high-dimensional data, including digital trace data from Google Trends. Comparing different models and forecasting horizons and validating out-of-sample, we find that an ensemble forecast combining Random Forest and Extreme Gradient Boosting algorithms outperforms the random walk over horizons between 3 and 12 months. For large corridors, this holds in a parsimonious model exclusively based on Google Trends variables, which has the advantage of near real-time availability. We provide practical recommendations how our approach can enable ahead-of-period asylum seeker flow forecasting applications.
引用
收藏
页码:3 / 19
页数:17
相关论文
共 25 条
[1]   Principal components estimation and identification of static factors [J].
Bai, Jushan ;
Ng, Serena .
JOURNAL OF ECONOMETRICS, 2013, 176 (01) :18-29
[2]   Assessing time series models for forecasting international migration: Lessons from the United Kingdom [J].
Bijak, Jakub ;
Disney, George ;
Findlay, Allan M. ;
Forster, Jonathan J. ;
Smith, Peter W. F. ;
Wisniowski, Arkadiusz .
JOURNAL OF FORECASTING, 2019, 38 (05) :470-487
[3]   THEILS FORECAST ACCURACY COEFFICIENT - CLARIFICATION [J].
BLIEMEL, F .
JOURNAL OF MARKETING RESEARCH, 1973, 10 (04) :444-446
[4]   Searching for a better life: Predicting international migration with online search keywords [J].
Boehme, Marcus H. ;
Groeger, Andre ;
Stoehr, Tobias .
JOURNAL OF DEVELOPMENT ECONOMICS, 2020, 142
[5]  
Bosco C., 2022, DATA INNOVATION DEMO
[6]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[7]   Forecasting asylum-related migration flows with machine learning and data at scale [J].
Carammia, Marcello ;
Iacus, Stefano Maria ;
Wilkin, Teddy .
SCIENTIFIC REPORTS, 2022, 12 (01)
[8]  
Disney G., 2015, Evaluation of existing migration forecasting methods and models
[9]  
European Union Agency for Asylum, 2023, ASYLUM REPORT 2023 A
[10]  
Eurostat, 2022, ANN ASYLUM STAT