An Efficient Multi Quantile Regression Network with Ad Hoc Prevention of Quantile Crossing

被引:0
|
作者
Decke, Jens [1 ]
Jenss, Arne [1 ]
Sick, Bernhard [1 ]
Gruhl, Christian [1 ]
机构
[1] Univ Kassel, Intelligent Embedded Syst, D-34121 Kassel, Germany
关键词
Quantile Regression; Quantile Crossing; Organic Computing; Self-Awareness; Differentiable Sorting;
D O I
10.1007/978-3-031-66146-4_4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the Sorting Composite Quantile Regression Neural Network (SCQRNN), an advanced quantile regression model designed to prevent quantile crossing and enhance computational efficiency. Integrating ad hoc sorting in training, the SCQRNN ensures non-intersecting quantiles, boosting model reliability and interpretability. We demonstrate that the SCQRNN not only prevents quantile crossing and reduces computational complexity but also achieves faster convergence than traditional models. This advancement meets the requirements of high-performance computing for sustainable, accurate computation. In organic computing, the SCQRNN enhances self-aware systems with predictive uncertainties, enriching applications across finance, meteorology, climate science, and engineering.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [21] Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts
    Song, Mengmeng
    Yang, Dazhi
    Lerch, Sebastian
    Xia, Xiang'ao
    Yagli, Gokhan Mert
    Bright, Jamie M.
    Shen, Yanbo
    Liu, Bai
    Liu, Xingli
    Mayer, Martin Janos
    ADVANCES IN ATMOSPHERIC SCIENCES, 2024, 41 (07) : 1417 - 1437
  • [22] Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts
    Mengmeng SONG
    Dazhi YANG
    Sebastian LERCH
    Xiangao XIA
    Gokhan Mert YAGLI
    Jamie MBRIGHT
    Yanbo SHEN
    Bai LIU
    Xingli LIU
    Martin Jnos MAYER
    AdvancesinAtmosphericSciences, 2024, 41 (07) : 1417 - 1437
  • [23] Efficient quantile marginal regression for longitudinal data with dropouts
    Cho, Hyunkeun
    Hong, Hyokyoung Grace
    Kim, Mi-Ok
    BIOSTATISTICS, 2016, 17 (03) : 561 - 575
  • [24] Semiparametrically efficient estimation in quantile regression of secondary analysis
    Liang, Liang
    Ma, Yanyuan
    Wei, Ying
    Carroll, Raymond J.
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2018, 80 (04) : 625 - 648
  • [25] No-Crossing Single-Index Quantile Regression Curve Estimation
    Jiang, Rong
    Yu, Keming
    JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 2023, 41 (02) : 309 - 320
  • [26] Bayesian non-crossing quantile regression for regularly varying distributions
    El Adlouni, Salaheddine
    Balde, Ismaila
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2019, 89 (05) : 884 - 898
  • [27] Deep support vector quantile regression with non-crossing constraints
    Shin, Wooyoung
    Jung, Yoonsuh
    COMPUTATIONAL STATISTICS, 2023, 38 (04) : 1947 - 1976
  • [28] Deep support vector quantile regression with non-crossing constraints
    Wooyoung Shin
    Yoonsuh Jung
    Computational Statistics, 2023, 38 : 1947 - 1976
  • [29] Non-crossing nonlinear regression quantiles by monotone composite quantile regression neural network, with application to rainfall extremes
    Alex J. Cannon
    Stochastic Environmental Research and Risk Assessment, 2018, 32 : 3207 - 3225
  • [30] Efficient estimation of a triangular system of equations for quantile regression
    Lee, Sungwon
    ECONOMICS LETTERS, 2023, 226