An Efficient Multi Quantile Regression Network with Ad Hoc Prevention of Quantile Crossing

被引:0
|
作者
Decke, Jens [1 ]
Jenss, Arne [1 ]
Sick, Bernhard [1 ]
Gruhl, Christian [1 ]
机构
[1] Univ Kassel, Intelligent Embedded Syst, D-34121 Kassel, Germany
关键词
Quantile Regression; Quantile Crossing; Organic Computing; Self-Awareness; Differentiable Sorting;
D O I
10.1007/978-3-031-66146-4_4
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This article presents the Sorting Composite Quantile Regression Neural Network (SCQRNN), an advanced quantile regression model designed to prevent quantile crossing and enhance computational efficiency. Integrating ad hoc sorting in training, the SCQRNN ensures non-intersecting quantiles, boosting model reliability and interpretability. We demonstrate that the SCQRNN not only prevents quantile crossing and reduces computational complexity but also achieves faster convergence than traditional models. This advancement meets the requirements of high-performance computing for sustainable, accurate computation. In organic computing, the SCQRNN enhances self-aware systems with predictive uncertainties, enriching applications across finance, meteorology, climate science, and engineering.
引用
收藏
页码:51 / 66
页数:16
相关论文
共 50 条
  • [1] SIMPLEX QUANTILE REGRESSION WITHOUT CROSSING
    Ando, Tomohiro
    Li, Ker-chau
    ANNALS OF STATISTICS, 2025, 53 (01): : 144 - 169
  • [2] Non-crossing convex quantile regression
    Dai, Sheng
    Kuosmanen, Timo
    Zhou, Xun
    ECONOMICS LETTERS, 2023, 233
  • [3] Efficient importance sampling imputation algorithms for quantile and composite quantile regression
    Cheng, Hao
    STATISTICAL ANALYSIS AND DATA MINING, 2022, 15 (03) : 339 - 356
  • [4] Multi-quantile systemic financial risk based on a monotone composite quantile regression neural network
    Ren, Chao
    Zhu, Ziyan
    Zhou, Donghai
    FRONTIERS IN PHYSICS, 2024, 12
  • [5] Efficient quantile regression for heteroscedastic models
    Jung, Yoonsuh
    Lee, Yoonkyung
    MacEachern, Steven N.
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2015, 85 (13) : 2548 - 2568
  • [6] Efficient quantile regression with auxiliary information
    Müller, Ursula U.
    Van Keilegom, Ingrid
    Springer Proceedings in Mathematics and Statistics, 2014, 68 : 365 - 374
  • [7] Efficient Estimation for Censored Quantile Regression
    Lee, Sze Ming
    Sit, Tony
    Xu, Gongjun
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023, 118 (544) : 2762 - 2775
  • [8] Predicting Pedestrian Crossing using Quantile Regression Forests
    Voelz, Benjamin
    Mielenz, Holger
    Siegwart, Roland
    Nieto, Juan
    2016 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2016, : 426 - 432
  • [9] Quantile regression in varying-coefficient models: non-crossing quantile curves and heteroscedasticity
    Andriyana, Y.
    Gijbels, I.
    Verhasselt, A.
    STATISTICAL PAPERS, 2018, 59 (04) : 1589 - 1621
  • [10] ESTIMATION OF NON-CROSSING QUANTILE REGRESSION CURVES
    Cai, Yuzhi
    Jiang, Tao
    AUSTRALIAN & NEW ZEALAND JOURNAL OF STATISTICS, 2015, 57 (01) : 139 - 162