p-Stokes;
Newton's method;
Global convergence;
Glaciology;
Sliding;
ICE-SHEET;
SYSTEMS;
D O I:
10.1007/s11075-024-01941-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
The motion of glaciers can be simulated with the p-Stokes equations. Up to now, Newton's method to solve these equations has been analyzed in finite-dimensional settings only. We analyze the problem in infinite dimensions to gain a new viewpoint. We do that by proving global convergence of the infinite-dimensional Newton's method with Armijo step sizes to the solution of these equations. We only have to add an arbitrarily small diffusion term for this convergence result. We prove that the additional diffusion term only causes minor differences in the solution compared to the original p-Stokes equations under the assumption of some regularity. Finally, we test our algorithms on two experiments: A reformulation of the experiment ISMIP-HOM B without sliding and a block with sliding. For the former, the approximation of exact step sizes for the Picard iteration and exact step sizes and Armijo step sizes for Newton's method are superior in the experiment compared to the Picard iteration. For the latter experiment, Newton's method with Armijo step sizes needs many iterations until it converges fast to the solution. Thus, Newton's method with approximately exact step sizes is better than Armijo step sizes in this experiment.
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, Portugal
机构:
Univ Pisa, Dipartimento Matemat, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Via F Buonarroti 1-C, I-56127 Pisa, Italy
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Nova Lisboa, Fac Ciencias & Tecnol, Dept Matemat, P-2829516 Quinta Da Torre, Caparica, Portugal
机构:
Univ Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalUniv Nova Lisboa, Dept Matemat, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, Portugal
机构:
Univ Pisa, Dipartimento Matemat, Via F Buonarroti 1-C, I-56127 Pisa, ItalyUniv Pisa, Dipartimento Matemat, Via F Buonarroti 1-C, I-56127 Pisa, Italy