Integral Representations and Zeros of the Lommel Function and the Hypergeometric 1F2 Function

被引:0
作者
Zullo, Federico [1 ,2 ]
机构
[1] Univ Brescia, DICATAM, Via Valotti 9, I-25133 Brescia, Italy
[2] INFN, Sez Milano Bicocca, Milan, Italy
关键词
Lommel functions; hypergeometric functions; integral representations; distribution of zeros;
D O I
10.1007/s00025-024-02259-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give different integral representations of the Lommel function s(mu,nu)(z) involving trigonometric and hypergeometric F-2(1) functions.By using classical results of Polya, we give the distribution of the zeros of s(mu,nu)(z) for certain regions in the plane (mu, nu). Further, thanks to a well known relation between the functions s(mu,nu)(z) and the hypergeometric F-1(2) function, we describe the distribution of the zeros of 1F2 for specific values of its parameters
引用
收藏
页数:17
相关论文
共 25 条
  • [1] AXISYMMETRIC VIBRATIONS OF RADIALLY POLARIZED PIEZOELECTRIC CERAMIC CYLINDERS
    ADELMAN, NT
    STAVSKY, Y
    SEGAL, E
    [J]. JOURNAL OF SOUND AND VIBRATION, 1975, 38 (02) : 245 - 254
  • [2] Born M., 1989, Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, V6
  • [3] Chandrasekhar S, 1960, Radiative Transfer
  • [4] On the positivity and zeros of Lommel functions: Hyperbolic extension and interlacing
    Cho, Yong-Kum
    Chung, Seok-Young
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 470 (02) : 898 - 910
  • [5] Cooke RG., 1932, J. Lond. Math. Soc, V7, P281, DOI [10.1112/jlms/s1-7.4.281, DOI 10.1112/JLMS/S1-7.4.281]
  • [6] POSITIVE INTEGRALS OF BESSEL FUNCTIONS
    GASPER, G
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1975, 6 (05) : 868 - 881
  • [7] Goursat E., 1881, Annales Scientifiques de l'E.N.S. 2e Serie, V10, P3, DOI [10.24033/asens.207.pdf, DOI 10.24033/ASENS.207.PDF]
  • [8] Hille Einar., 1929, J LOND MATH SOC, V4, P50, DOI 10.1112/jlms/s1-4.1.50
  • [9] Hurwitz A., 1891, Math. Ann., V38, P452, DOI DOI 10.1007/BF01199430
  • [10] Klein F., 1890, Math. Ann, V37, P573, DOI [10.1007/BF01724773, DOI 10.1007/BF01724773]